ترغب بنشر مسار تعليمي؟ اضغط هنا

Cu-63 NQR Measurement of Stripe Order Parameter in La(2-x)Sr(x)CuO(4)

89   0   0.0 ( 0 )
 نشر من قبل Allen W. Hunt
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that one can measure the charge-stripe order parameter in the hole-doped CuO(2) planes of La(1.875)Ba(0.125)CuO(4), La(1.48)Nd(0.4)Sr(0.12)CuO(4) and La(1.68)Eu(0.2)Sr(0.12)CuO(4) utilizing the wipeout effects of Cu-63 NQR. Application of the same approach to La(2-x)Sr(x)CuO(4) reveals the presence of similar stripe order for the entire underdoped superconducting regime 1/16 < x < 1/8.



قيم البحث

اقرأ أيضاً

154 - P.M. Singer , A.W. Hunt , T. Imai 2001
We report experimental evidence for the spatial variation of hole concentration x_(hole) in the high Tc superconductor La(2-x)Sr(x)CuO(4) (0.04 <= x <= 0.16) by using (63)Cu NQR for (63)Cu isotope enriched samples. We demonstrate that the extent of t he spatial variation of the local hole concentration D(x)_(hole) is reflected on (63)1/T1 and deduce the temperature dependence. D(x)_(hole) increases below 500 - 600K, and reaches values as large as D(x)_(hole)/x ~ 0.5 below ~ 150K. We estimate the length scale of the spatial variation in x_(hole) to be R_(hole) >~ 3nm from analysis of the NQR spectrum.
We demonstrate that the integrated intensity of Cu-63 nuclear quadrupole resonance (NQR) in La(1.6-x)Nd(0.4)Sr(x)CuO(4) decreases dramatically below the charge-stripe ordering temperature T(charge). Comparison with neutron and X-ray scattering indica tes that the wipeout fraction F(T) (i.e. the missing fraction of the integrated intensity of the NQR signal) represents the charge-stripe order parameter. The systematic study reveals bulk charge-stripe order throughout the superconducting region 0.07 <= x <= 0.25. As a function of the reduced temperature t = T/T(charge), the temperature dependence of F(t) is sharpest for the hole concentration x=1/8, indicating that x=1/8 is the optimum concentration for stripe formation.
We report detailed systematic measurements of the spatial variation in electronic states in the high T{c} superconductor La{2-x}Sr{x}CuO{4} (0.04<= x <= 0.16) using {63}Cu NQR for {63}Cu isotope enriched poly-crystalline samples. We demonstrate that the spatial variation in local hole concentration {63}x{local} given by {63}x{local} = x +/- {63}Dx{local}, where x is the nominal hole concentration and {63}Dx{local} is defined as the amplitude (or extent) of the spatial variation, is reflected in the frequency dependence of the spin-lattice relaxation rate {63}1/T{1} across the inhomogeneous linebroadening of the {63}Cu NQR spectrum. By using high precision measurements of the temperature dependence of {63}1/T_{1} at various positions across the {63}Cu NQR lineshape, we demonstrate that {63}Dx{local} increases below 500 - 600 K and reaches values as large as {63}Dx{local} / x ~ 0.5 in the temperature region > 150 K. By incorporating the random positioning of {+2}Sr donor ions in the lattice in a novel approach, a lower bound to the length scale of the spatial variation {63}R{patch} is deduced by fitting the entire {63}Cu NQR spectrum (including the ``B -line) using a patch-by-patch distribution of the spatial variation {63}x{local} with the patch radius {63}R_{patch} > 3.0 nm as the only free parameter. A corresponding upper bound to the amplitude of the spatial variation {63}Dx{patch} (~ 1/{63}R_{patch}) is deduced within the model, and consistent results are found with {63}Dx{local} . We also deduce the onset temperature T{Q} (> 400 K) for local orthorhombic lattice distortions which, in the region x > 0.04, is found to be larger than the onset temperature of long range structural order.
The correlations between stripe order, superconductivity, and crystal structure in La(2-x)Ba(x)CuO(4) single crystals have been studied by means of x-ray and neutron diffraction as well as static magnetization measurements. The derived phase diagram shows that charge stripe order (CO) coexists with bulk superconductivity in a broad range of doping around x=1/8, although the CO order parameter falls off quickly for x<>1/8. Except for x=0.155, the onset of CO always coincides with the transition between the orthorhombic and the tetragonal low temperature structures. The CO transition evolves from a sharp drop at low x to a more gradual transition at higher x, eventually falling below the structural phase boundary for optimum doping. With respect to the interlayer CO correlations, we find no qualitative change of the stripe stacking order as a function of doping, and in-plane and out-of-plane correlations disappear simultaneously at the transition. Similarly to the CO, the spin stripe order (SO) is also most pronounced at x=1/8. Truly static SO sets in below the CO and coincides with the first appearance of in-plane superconducting correlations at temperatures significantly above the bulk transition to superconductivity (SC). Indications that bulk SC causes a reduction of the spin or charge stripe order could not be identified. We argue that CO is the dominant order that is compatible with SC pairing but competes with SC phase coherence. Comparing our results with data from the literature, we find good agreement if all results are plotted as a function of x instead of the nominal x, where x represents an estimate of the actual Ba content, extracted from the doping dependence of the structural transition between the orthorhombic phase and the tetragonal high-temperature phase.
163 - M. Kofu , S. -H. Lee , M. Fujita 2008
Low energy spin excitations were investigated in the static stripe phase of La_{2-x}Sr_xCuO_4 using elastic and inelastic neutron scattering on single crystals. For x = 1/8 in which long-range static stripe order exists, an energy gap of E_g = 4 meV exists in the excitation spectrum in addition to strong quasi-elastic, incommensurate spin fluctuations associated with the static stripes. When x increases, the spectral weight of the spin fluctuations shifts from the quasi-elastic continuum to the excitation spectrum above E_g. The dynamic correlation length as a function of energy and the temperature evolution of the energy spectrum suggest a phase separation of two distinct magnetic phases in real space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا