ترغب بنشر مسار تعليمي؟ اضغط هنا

(63)Cu NQR Evidence for Spatial Variation of Hole Concentration in La(2-x)Sr(x)CuO(4)

155   0   0.0 ( 0 )
 نشر من قبل Philip M. Singer
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report experimental evidence for the spatial variation of hole concentration x_(hole) in the high Tc superconductor La(2-x)Sr(x)CuO(4) (0.04 <= x <= 0.16) by using (63)Cu NQR for (63)Cu isotope enriched samples. We demonstrate that the extent of the spatial variation of the local hole concentration D(x)_(hole) is reflected on (63)1/T1 and deduce the temperature dependence. D(x)_(hole) increases below 500 - 600K, and reaches values as large as D(x)_(hole)/x ~ 0.5 below ~ 150K. We estimate the length scale of the spatial variation in x_(hole) to be R_(hole) >~ 3nm from analysis of the NQR spectrum.

قيم البحث

اقرأ أيضاً

We demonstrate that one can measure the charge-stripe order parameter in the hole-doped CuO(2) planes of La(1.875)Ba(0.125)CuO(4), La(1.48)Nd(0.4)Sr(0.12)CuO(4) and La(1.68)Eu(0.2)Sr(0.12)CuO(4) utilizing the wipeout effects of Cu-63 NQR. Application of the same approach to La(2-x)Sr(x)CuO(4) reveals the presence of similar stripe order for the entire underdoped superconducting regime 1/16 < x < 1/8.
We report detailed systematic measurements of the spatial variation in electronic states in the high T{c} superconductor La{2-x}Sr{x}CuO{4} (0.04<= x <= 0.16) using {63}Cu NQR for {63}Cu isotope enriched poly-crystalline samples. We demonstrate that the spatial variation in local hole concentration {63}x{local} given by {63}x{local} = x +/- {63}Dx{local}, where x is the nominal hole concentration and {63}Dx{local} is defined as the amplitude (or extent) of the spatial variation, is reflected in the frequency dependence of the spin-lattice relaxation rate {63}1/T{1} across the inhomogeneous linebroadening of the {63}Cu NQR spectrum. By using high precision measurements of the temperature dependence of {63}1/T_{1} at various positions across the {63}Cu NQR lineshape, we demonstrate that {63}Dx{local} increases below 500 - 600 K and reaches values as large as {63}Dx{local} / x ~ 0.5 in the temperature region > 150 K. By incorporating the random positioning of {+2}Sr donor ions in the lattice in a novel approach, a lower bound to the length scale of the spatial variation {63}R{patch} is deduced by fitting the entire {63}Cu NQR spectrum (including the ``B -line) using a patch-by-patch distribution of the spatial variation {63}x{local} with the patch radius {63}R_{patch} > 3.0 nm as the only free parameter. A corresponding upper bound to the amplitude of the spatial variation {63}Dx{patch} (~ 1/{63}R_{patch}) is deduced within the model, and consistent results are found with {63}Dx{local} . We also deduce the onset temperature T{Q} (> 400 K) for local orthorhombic lattice distortions which, in the region x > 0.04, is found to be larger than the onset temperature of long range structural order.
We demonstrate that the integrated intensity of Cu-63 nuclear quadrupole resonance (NQR) in La(1.6-x)Nd(0.4)Sr(x)CuO(4) decreases dramatically below the charge-stripe ordering temperature T(charge). Comparison with neutron and X-ray scattering indica tes that the wipeout fraction F(T) (i.e. the missing fraction of the integrated intensity of the NQR signal) represents the charge-stripe order parameter. The systematic study reveals bulk charge-stripe order throughout the superconducting region 0.07 <= x <= 0.25. As a function of the reduced temperature t = T/T(charge), the temperature dependence of F(t) is sharpest for the hole concentration x=1/8, indicating that x=1/8 is the optimum concentration for stripe formation.
We investigate the hole and lattice dynamics in a prototypical high temperature superconducting system La{2-x}Sr{x}CuO{4} using infrared spectroscopy. By exploring the anisotropy in the electronic response of CuO2 planes we show that our results supp ort the notion of stripes. Nevertheless, charge ordering effects are not apparent in the phonon spectra. All crystals show only the expected infrared active modes for orthorhombic phases without evidence for additional peaks that may be indicative of static charge ordering. Strong electron-phonon interaction manifests itself through the Fano lineshape of several phonon modes. This analysis reveals anisotropic electron-phonon coupling across the phase diagram, including superconducting crystals. Due to the ubiquity of the CuO2 plane, these results may have implications for other high Tc superconductors.
The in-plane optical conductivity of seven La(2-x)Sr(x)CuO(4) single crystals with x between 0 and 0.15 has been studied from 30 to 295 K. All doped samples exhibit strong peaks in the far-infrared, which closely resemble those observed in Cu-O ladde rs with one-dimensional charge-ordering. The behavior with doping and temperature of the peak energy, width, and intensity allows us to conclude that we are observing charge stripes dynamics in La(2-x)Sr(x)CuO(4) on the fast time scale of infrared spectroscopy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا