ترغب بنشر مسار تعليمي؟ اضغط هنا

Dependence of Magnetic Anisotropy and Magnetoresistance of Ni81Fe19-Films on Annealing

44   0   0.0 ( 0 )
 نشر من قبل Dr. Michael Moske
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Permalloy (Py:Ni81Fe19) exhibits an anisotropic magnetoresistance (AMR) which is very often used to read magnetic signals from storage devices. Py-films of thickness 20nm were prepared by dc-magnetron sputtering in a magnetic field onto thermally oxidized Si-wafers and annealed ex situ at temperatures up to 1000K in order to investigate the dependence of the magnetic anisotropy and the AMR on heat treatments. The films exhibit an uniaxial anisotropy after preparation which changes during annealing above 520K. The AMR along the former magnetically easy axis as well as the corresponding field sensitivity are increased by a heat treatment around 700K reaching maxima of about 8% and a maximum sensitivity of 1.5%/Oe, respectively. We discuss possible sources for the change in anisotropy, i.e. strain effects, inhomogeneities, and changes of the local atomic order.

قيم البحث

اقرأ أيضاً

Tilted off-plane magnetic anisotropy induces two unusual characteristic magnetotransport phenomena: extraordinary Hall effect in the presence of an in-plane magnetic field, and non-monotonic anisotropic magnetoresistance in the presence of a field no rmal to the sample plane. We show experimentally that these effects are generic, appearing in multiple ferromagnetic systems with tilted anisotropy introduced either by oblique deposition from a single source or in binary systems co-deposited from separate sources. We present a theoretical model demonstrating that these observations are natural results of the standard extraordinary Hall effect and anisotropic magnetoresistance, when the titled anisotropy is properly accounted for. Such a scenario may help explaining various previous intriguing measurements by other groups.
We report on the magnetic properties of zinc ferrite thin film deposited on SrTiO$_3$ single crystal using pulsed laser deposition. X-ray diffraction result indicates the highly oriented single phase growth of the film along with the presence of the strain. In comparison to the bulk antiferromagnetic order, the as-deposited film has been found to exhibit ferrimagnetic ordering with a coercive field of 1140~Oe at 5~K. A broad maximum, at $approx$105~K, observed in zero-field cooled magnetization curve indicates the wide grain size distribution for the as-deposited film. Reduction in magnetization and blocking temperature has been observed after annealing in both argon as well as oxygen atmospheres, where the variation was found to be dependent on the annealing temperature.
70 - V. Stanciu , P. Svedlindh 2005
The dependence of the magnetic anisotropy of As-capped (Ga,Mn)As epilayers on the annealing parameters - temperature and time - has been investigated. A uniaxial magnetic anisotropy is evidenced, whose orientation with respect to the crystallographic axes changes upon annealing from [-110] for the as-grown samples to [110] for the annealed samples. Both cubic an uniaxial anisotropies are tightly linked to the concentration of charge carriers, the magnitude of which is controlled by the annealing process.
We investigated the magnetic anisotropy ratio of thin sputtered polycrystalline MgB2 films on MgO substrates. Using high magnetic field measurements, we estimated an anisotropy ratio of 1.35 for T=0 K with an upper critical field of 31.74 T in the pa rallel case and 23.5 T in the perpendicular case. Direct measurements of a magnetic-field sweep at 4.2 K show a linear behavior, confirmed by a linear fit for magnetic fields perpendicular to the film plane. Furthermore, we observed a change of up to 12% of the anisotropy ratio in dependence of the film thickness.
We report measurements on yttrium iron garnet (YIG) thin films grown on both gadolinium gallium garnet (GGG) and yttrium aluminium garnet (YAG) substrates, with and without thin Pt top layers. We provide three principal results: the observation of an interfacial region at the Pt/YIG interface, we place a limit on the induced magnetism of the Pt layer and confirm the existence of an interfacial layer at the GGG/YIG interface. Polarised neutron reflectometry (PNR) was used to give depth dependence of both the structure and magnetism of these structures. We find that a thin film of YIG on GGG is best described by three distinct layers: an interfacial layer near the GGG, around 5 nm thick and non-magnetic, a magnetic bulk phase, and a non-magnetic and compositionally distinct thin layer near the surface. We theorise that the bottom layer, which is independent of the film thickness, is caused by Gd diffusion. The top layer is likely to be extremely important in inverse spin Hall effect measurements, and is most likely Y2O3 or very similar. Magnetic sensitivity in the PNR to any induced moment in the Pt is increased by the existence of the Y2O3 layer; any moment is found to be less than 0.02 uB/atom.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا