ترغب بنشر مسار تعليمي؟ اضغط هنا

On the robustness of scale invariance in SOC models

142   0   0.0 ( 0 )
 نشر من قبل Carmen P. C. do Prado
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A random neighbor extremal stick-slip model is introduced. In the thermodynamic limit, the distribution of states has a simple analytical form and the mean avalanche size, as a function of the coupling parameter, is exactly calculable. The system is critical only at a special point Jc in the coupling parameter space. However, the critical region around this point, where approximate scale invariance holds, is very large, suggesting a mechanism for explaining the ubiquity of scale invariance in Nature.



قيم البحث

اقرأ أيضاً

68 - P.L. Krapivsky , I. Grosse , 1999
We derive exact statistical properties of a class of recursive fragmentation processes. We show that introducing a fragmentation probability 0<p<1 leads to a purely algebraic size distribution in one dimension, P(x) ~ x^{-2p}. In d dimensions, the vo lume distribution diverges algebraically in the small fragment limit, P(V)sim V^{-gamma} with gamma=2p^{1/d}. Hence, the entire range of exponents allowed by mass conservation is realized. We demonstrate that this fragmentation process is non-self-averaging. Specifically, the moments Y_alpha=sum_i x_i^{alpha} exhibit significant fluctuations even in the thermodynamic limit.
67 - Didier Sornette 1997
We discuss the concept of discrete scale invariance and how it leads to complex critical exponents (or dimensions), i.e. to the log-periodic corrections to scaling. After their initial suggestion as formal solutions of renormalization group equations in the seventies, complex exponents have been studied in the eighties in relation to various problems of physics embedded in hierarchical systems. Only recently has it been realized that discrete scale invariance and its associated complex exponents may appear ``spontaneously in euclidean systems, i.e. without the need for a pre-existing hierarchy. Examples are diffusion-limited-aggregation clusters, rupture in heterogeneous systems, earthquakes, animals (a generalization of percolation) among many other systems. We review the known mechanisms for the spontaneous generation of discrete scale invariance and provide an extensive list of situations where complex exponents have been found. This is done in order to provide a basis for a better fundamental understanding of discrete scale invariance. The main motivation to study discrete scale invariance and its signatures is that it provides new insights in the underlying mechanisms of scale invariance. It may also be very interesting for prediction purposes.
Systems of particles interacting via inverse-power law potentials have an invariance with respect to changes in length and temperature, implying a correspondence in the dynamics and thermodynamics between different `isomorphic sets of temperatures an d densities. In a recent series of works, it has been argued that such correspondences hold to a surprisingly good approximation in a much more general class of potentials, an observation that summarizes many properties that have been observed in the past. In this paper we show that such relations are exact in high-dimensional liquids and glasses, a limit in which the conditions for these mappings to hold become transparent. The special role played by the exponential potential is also confirmed.
76 - Yu Nakayama 2020
There exists a certain argument that in even dimensions, scale invariant quantum field theories are conformal invariant. We may try to extend the argument in $2n + epsilon$ dimensions, but the naive extension has a small loophole, which indeed shows an obstruction in non-linear sigma models in $2+epsilon$ dimensions. Even though it could have failed due to the loophole, we show that scale invariance does imply conformal invariance of non-linear sigma models in $2+epsilon$ dimension from the seminal work by Perelman on the Ricci flow.
In this work we elaborate on two recently discovered invariance principles, according to which transport coefficients are, to a large extent, independent of the microscopic definition of the densities and currents of the conserved quantities being tr ansported (energy, momentum, mass, charge). The first such principle, gauge invariance, allows one to define a quantum adiabatic energy current from density-functional theory, from which the heat conductivity can be uniquely defined and computed using equilibrium ab initio molecular dynamics. When combined with a novel topological definition of atomic oxidation states, gauge invariance also sheds new light onto the mechanisms of charge transport in ionic conductors. The second principle, convective invariance, allows one to extend the analysis to multi-component systems. These invariance principles can be combined with new spectral analysis methods for the current time series to be fed into the Green-Kubo formula to obtain accurate estimates of transport coefficients from relatively short molecular dynamics simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا