ﻻ يوجد ملخص باللغة العربية
In this work we elaborate on two recently discovered invariance principles, according to which transport coefficients are, to a large extent, independent of the microscopic definition of the densities and currents of the conserved quantities being transported (energy, momentum, mass, charge). The first such principle, gauge invariance, allows one to define a quantum adiabatic energy current from density-functional theory, from which the heat conductivity can be uniquely defined and computed using equilibrium ab initio molecular dynamics. When combined with a novel topological definition of atomic oxidation states, gauge invariance also sheds new light onto the mechanisms of charge transport in ionic conductors. The second principle, convective invariance, allows one to extend the analysis to multi-component systems. These invariance principles can be combined with new spectral analysis methods for the current time series to be fed into the Green-Kubo formula to obtain accurate estimates of transport coefficients from relatively short molecular dynamics simulations.
Thermal transport coefficients are independent of the specific microscopic expression for the energy density and current from which they can be derived through the Green-Kubo formula. We discuss this independence in terms of a kind of gauge invarianc
We review the recent advances on exact results for dynamical correlation functions at large scales and related transport coefficients in interacting integrable models. We discuss Drude weights, conductivity and diffusion constants, as well as linear
We compute the shear and bulk viscosities, as well as the thermal conductivity of an ultrarelativistic fluid obeying the relativistic Boltzmann equation in 2+1 space-time dimensions. The relativistic Boltzmann equation is taken in the single relaxati
We introduce and study a simple and natural class of solvable stochastic lattice gases. This is the class of emph{Strong Particles}. The name is due to the fact that when they try to jump to an occupied site they succeed pushing away a pile of partic
A new formula to calculate the transport coefficients of the causal dissipative hydrodynamics is derived by using the projection operator method (Mori-Zwanzig formalism) in [T. Koide, Phys. Rev. E75, 060103(R) (2007)]. This is an extension of the Gre