ﻻ يوجد ملخص باللغة العربية
We explore the scaling description for a two-dimensional metal-insulator transition (MIT) of electrons in silicon. Near the MIT, $beta_{T}/p = (-1/p)d(ln g)/d(ln T)$ is universal (with $p$, a sample dependent exponent, determined separately; $g$--conductance, $T$--temperature). We obtain the characteristic temperatures $T_0$ and $T_1$ demarking respectively the quantum critical region and the regime of validity of single parameter scaling in the metallic phase, and show that $T_1$ vanishes as the transition is approached. For $T<T_1$, the scaling of the data requires a second parameter. Moreover, all of the data can be described with two-parameter scaling at all densities -- even far from the transition.
The quantum phase transition between the three dimensional Dirac semimetal and the diffusive metal can be induced by increasing disorder. Taking the system of disordered $mathbb{Z}_2$ topological insulator as an important example, we compute the sing
Reports of metallic behavior in two-dimensional (2D) systems such as high mobility metal-oxide field effect transistors, insulating oxide interfaces, graphene, and MoS2 have challenged the well-known prediction of Abrahams, et al. that all 2D systems
The recently discovered three dimensional or bulk topological insulators are expected to exhibit exotic quantum phenomena. It is believed that a trivial insulator can be twisted into a topological state by modulating the spin-orbit interaction or the crystal lattice via odd number of band
Using symmetry breaking strain to tune the valley occupation of a two-dimensional (2D) electron system in an AlAs quantum well, together with an applied in-plane magnetic field to tune the spin polarization, we independently control the systems valle
We investigate the finite-size scaling behavior of the conductivity in a two-dimensional Dirac electron gas within a chiral sigma model. Based on the fact that the conductivity is a function of system size times scattering rate, we obtain a two-param