ﻻ يوجد ملخص باللغة العربية
The quantum phase transition between the three dimensional Dirac semimetal and the diffusive metal can be induced by increasing disorder. Taking the system of disordered $mathbb{Z}_2$ topological insulator as an important example, we compute the single particle density of states by the kernel polynomial method. We focus on three regions: the Dirac semimetal at the phase boundary between two topologically distinct phases, the tricritical point of the two topological insulator phases and the diffusive metal, and the diffusive metal lying at strong disorder. The density of states obeys a novel single parameter scaling, collapsing onto two branches of a universal scaling function, which correspond to the Dirac semimetal and the diffusive metal. The diverging length scale critical exponent $ u$ and the dynamical critical exponent $z$ are estimated, and found to differ significantly from those for the conventional Anderson transition. Critical behavior of experimentally observable quantities near and at the tricritical point is also discussed.
We explore the scaling description for a two-dimensional metal-insulator transition (MIT) of electrons in silicon. Near the MIT, $beta_{T}/p = (-1/p)d(ln g)/d(ln T)$ is universal (with $p$, a sample dependent exponent, determined separately; $g$--con
Disordered non-interacting systems in sufficiently high dimensions have been predicted to display a non-Anderson disorder-driven transition that manifests itself in the critical behaviour of the density of states and other physical observables. Recen
We study the surface of a three-dimensional spin chiral $mathrm{Z}_2$ topological insulator (class CII), demonstrating the possibility of its localization. This arises through an interplay of interaction and statistically-symmetric disorder, that con
Dislocations are ubiquitous in three-dimensional solid-state materials. The interplay of such real space topology with the emergent band topology defined in reciprocal space gives rise to gapless helical modes bound to the line defects. This is known
The recently discovered three dimensional or bulk topological insulators are expected to exhibit exotic quantum phenomena. It is believed that a trivial insulator can be twisted into a topological state by modulating the spin-orbit interaction or the crystal lattice via odd number of band