ﻻ يوجد ملخص باللغة العربية
The partition function of the O(n) loop model on the honeycomb lattice is mapped to that of the O(n) loop model on the 3-12 lattice. Both models share the same operator content and thus critical exponents. The critical points are related via a simple transformation of variables. When n=0 this gives the recently found exact value $mu = 1.711 041...$ for the connective constant of self-avoiding walks on the 3-12 lattice. The exact critical points are recovered for the Ising model on the 3-12 lattice and the dual asanoha lattice at n=1.
Using Environmentally Friendly Renormalization, we present an analytic calculation of the series for the renormalization constants that describe the equation of state for the $O(N)$ model in the whole critical region. The solution of the beta-functio
The quantum O(N) model in the infinite $N$ limit is a paradigm for symmetry-breaking. Qualitatively, its phase diagram is an excellent guide to the equilibrium physics for more realistic values of $N$ in varying spatial dimensions ($d>1$). Here we in
We study periodically driven bosonic scalar field theories in the infinite N limit. It is well-known that the free theory can undergo parametric resonance under monochromatic modulation of the mass term and thereby absorb energy indefinitely. Interac
A relation between O$(n)$ models and Ising models has been recently conjectured [L. Casetti, C. Nardini, and R. Nerattini, Phys. Rev. Lett. 106, 057208 (2011)]. Such a relation, inspired by an energy landscape analysis, implies that the microcanonica
The effect of surface exchange anisotropies is known to play a important role in magnetic critical and multicritical behavior at surfaces. We give an exact analysis of this problem in d=2 for the O(n) model by using Coulomb gas, conformal invariance