ﻻ يوجد ملخص باللغة العربية
A relation between O$(n)$ models and Ising models has been recently conjectured [L. Casetti, C. Nardini, and R. Nerattini, Phys. Rev. Lett. 106, 057208 (2011)]. Such a relation, inspired by an energy landscape analysis, implies that the microcanonical density of states of an O$(n)$ spin model on a lattice can be effectively approximated in terms of the density of states of an Ising model defined on the same lattice and with the same interactions. Were this relation exact, it would imply that the critical energy densities of all the O$(n)$ models (i.e., the average values per spin of the O$(n)$ Hamiltonians at their respective critical temperatures) should be equal to that of the corresponding Ising model; it is therefore worth investigating how different the critical energies are and how this difference depends on $n$. We compare the critical energy densities of O$(n)$ models in three dimensions in some specific cases: the O$(1)$ or Ising model, the O$(2)$ or $XY$ model, the O$(3)$ or Heisenberg model, the O$(4)$ model and the O$(infty)$ or spherical model, all defined on regular cubic lattices and with ferromagnetic nearest-neighbor interactions. The values of the critical energy density in the $n=2$, $n=3$, and $n=4$ cases are derived through a finite-size scaling analysis of data produced by means of Monte Carlo simulations on lattices with up to $128^3$ sites. For $n=2$ and $n=3$ the accuracy of previously known results has been improved. We also derive an interpolation formula showing that the difference between the critical energy densities of O$(n)$ models and that of the Ising model is smaller than $1%$ if $n<8$ and never exceeds $3%$ for any $n$.
The critical behaviour of the O(n)-symmetric model with two n-vector fields is studied within the field-theoretical renormalization group approach in a D=4-2 epsilon expansion. Depending on the coupling constants the beta-functions, fixed points and
In previous work with Scullard, we defined a graph polynomial P_B(q,T) that gives access to the critical temperature T_c of the q-state Potts model on a general two-dimensional lattice L. It depends on a basis B, containing n x m unit cells of L, and
Monte Carlo (MC) analysis of the Goldstone mode singularities for the transverse and the longitudinal correlation functions, behaving as G_{perp}(k) simeq ak^{-lambda_{perp}} and G_{parallel}(k) simeq bk^{-lambda_{parallel}} in the ordered phase at k
The multi-critical fixed points of $O(N)$ symmetric models cease to exist in the $Ntoinfty$ limit, but the mechanism regulating their annihilation still presents several enigmatic aspects. Here, we explore the evolution of high-order multi-critical p
We solve analytically the renormalization-group equation for the potential of the O(N)-symmetric scalar theory in the large-N limit and in dimensions 2<d<4, in order to look for nonperturbative fixed points that were found numerically in a recent stu