ترغب بنشر مسار تعليمي؟ اضغط هنا

Conductance Fluctuations Near the Two-Dimensional Metal-Insulator Transition

73   0   0.0 ( 0 )
 نشر من قبل Sean Washburn
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measurements of conductance $G$ on short, wide, high-mobility Si-MOSFETs reveal both a two-dimensional metal-insulator transition (MIT) at moderate temperatures (1 $<~ T <$ 4~K) and mesoscopic fluctuations of the conductance at low temperatures ($T~ <$ 1~K). Both were studied as a function of chemical potential (carrier concentration $n_s$) controlled by gate voltage ($V_g$) and magnetic field $B$ near the MIT. Fourier analysis of the low temperature fluctuations reveals several fluctuation scales in $V_g$ that vary non-monotonically near the MIT. At higher temperatures, $G(V_g,B)$ is similar to large FETs and exhibits a MIT. All of the observations support the suggestion that the MIT is driven by Coulomb interactions among the carriers.



قيم البحث

اقرأ أيضاً

The pressure-induced insulator to metal transition (IMT) of layered magnetic nickel phosphorous tri-sulfide NiPS3 was studied in-situ under quasi-uniaxial conditions by means of electrical resistance (R) and X-ray diffraction (XRD) measurements. This sluggish transition is shown to occur at 35 GPa. Transport measurements show no evidence of superconductivity to the lowest measured temperature (~ 2 K). The structure results presented here differ from earlier in-situ work that subjected the sample to a different pressure state, suggesting that in NiPS3 the phase stability fields are highly dependent on strain. It is suggested that careful control of the strain is essential when studying the electronic and magnetic properties of layered van der Waals solids.
We study conductance fluctuations in a two-dimensional electron gas as a function of chemical potential (or gate voltage) from the strongly insulating to the metallic regime. Power spectra of the fluctuations decay with two distinct exponents (1/v_l and 1/v_h). For conductivity $sigmasim 0.1 e^{2}/h$, we find a third exponent (1/v_i) in the shortest samples, and non-monotonic dependence of v_i and v_l on sigma. We study the dependence of v_i, v_l, v_h, and the variances of corresponding fluctuations on sigma, sample size, and temperature. The anomalies near $sigmasimeq 0.1 e^{2}/h$ indicate that the dielectric response and screening length are critically behaved, i.e. that Coulomb correlations dominate the physics.
125 - O. Gunawan , T. Gokmen , K. Vakili 2006
Using symmetry breaking strain to tune the valley occupation of a two-dimensional (2D) electron system in an AlAs quantum well, together with an applied in-plane magnetic field to tune the spin polarization, we independently control the systems valle y and spin degrees of freedom and map out a spin-valley phase diagram for the 2D metal-insulator transition. The insulating phase occurs in the quadrant where the system is both spin- and valley-polarized. This observation establishes the equivalent roles of spin and valley degrees of freedom in the 2D metal-insulator transition.
124 - Dragana Popovic 2016
Experimental evidence for the possible universality classes of the metal-insulator transition (MIT) in two dimensions (2D) is discussed. Sufficiently strong disorder, in particular, changes the nature of the transition. Comprehensive studies of the c harge dynamics are also reviewed, describing evidence that the MIT in a 2D electron system in silicon should be viewed as the melting of the Coulomb glass. Comparisons are made to recent results on novel 2D materials and quasi-2D strongly correlated systems, such as cuprates.
Experimental results on the metal-insulator transition and related phenomena in strongly interacting two-dimensional electron systems are discussed. Special attention is given to recent results for the strongly enhanced spin susceptibility, effective mass, and thermopower in low-disordered silicon MOSFETs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا