ﻻ يوجد ملخص باللغة العربية
The ab plane optical spectra of two single crystals of La(2-x)Sr(x)Cu(4), one overdoped and one underdoped, were investigated. We observe a gap-like depression of the effective scattering rate below 700 cm(-1) in both systems. This feature persists up to 300 K in the underdoped sample with the concentration of Sr x=0.14 but loses prominance at temperatures above 300 K in the overdoped regime (x=0.22). Below 700 cm(-1) the scattering rate is temperature dependent and superlinear in frequency for both samples. Above this frequency the effective scattering rate becomes linear in frequency and is temperature independent in the case of the underdoped La(1.86)Sr(0.14)CuO(4) up to 300 K. On the other hand, the overdoped La(1.76)Sr(0.22)CuO(4) shows a scattering rate temperature dependence above 700 cm(-1) at all temperatures. This behaviour of the frequency and temperature dependent scattering rates is a signature of a pseudogap state in other HTSC materials and suggests that both the under and overdoped single-layer HTSC systems Ls(2-x)Sr(x)CuO(4) have a pseudogap at temperatures exceeding 300 K.
Low energy spin excitations were investigated in the static stripe phase of La_{2-x}Sr_xCuO_4 using elastic and inelastic neutron scattering on single crystals. For x = 1/8 in which long-range static stripe order exists, an energy gap of E_g = 4 meV
The specific heat $C$ of the cuprate superconductors La$_{2-x}$Sr$_x$CuO$_4$ and Bi$_{2+y}$Sr$_{2-x-y}$La$_x$CuO$_{6+delta}$ was measured at low temperature (down to $0.5~{rm K}$), for dopings $p$ close to $p^star$, the critical doping for the onset
We report a detailed inelastic neutron scattering study of the collective magnetic excitations of overdoped superconducting La1.78Sr0.22CuO4 for the energy range 0-160 meV. Our measurements show that overdoping suppresses the strong response present
We investigate the hole and lattice dynamics in a prototypical high temperature superconducting system La{2-x}Sr{x}CuO{4} using infrared spectroscopy. By exploring the anisotropy in the electronic response of CuO2 planes we show that our results supp
We demonstrate that one can measure the charge-stripe order parameter in the hole-doped CuO(2) planes of La(1.875)Ba(0.125)CuO(4), La(1.48)Nd(0.4)Sr(0.12)CuO(4) and La(1.68)Eu(0.2)Sr(0.12)CuO(4) utilizing the wipeout effects of Cu-63 NQR. Application