ﻻ يوجد ملخص باللغة العربية
We apply the finite-temperature renormalization-group (RG) to a model based on an effective action with a short-range repulsive interaction and a rotation invariant Fermi surface. The basic quantities of Fermi liquid theory, the Landau function and the scattering vertex, are calculated as fixed points of the RG flow in terms of the effective actions interaction function. The classic derivations of Fermi liquid theory, which apply the Bethe-Salpeter equation and amount to summing direct particle-hole ladder diagrams, neglect the zero-angle singularity in the exchange particle-hole loop. As a consequence, the antisymmetry of the forward scattering vertex is not guaranteed and the amplitude sum rule must be imposed by hand on the components of the Landau function. We show that the strong interference of the direct and exchange processes of particle-hole scattering near zero angle invalidates the ladder approximation in this region, resulting in temperature-dependent narrow-angle anomalies in the Landau function and scattering vertex. In this RG approach the Pauli principle is automatically satisfied. The consequences of the RG corrections on Fermi liquid theory are discussed. In particular, we show that the amplitude sum rule is not valid.
A free Fermi gas has, famously, a superconducting susceptibility that diverges logarithmically at zero temperature. In this paper we ask whether this is still true for a Fermi liquid and find that the answer is that it does {it not}. From the perspec
We determine the global renormalization group (RG) flow of the Sachdev-Ye-Kitaev (SYK) model. This flow allows for an understanding of the surprising role of critical slowing down at a quantum first-order transition in strongly-correlated electronic
We present a calculation of the low energy Greens function in $1+epsilon$ dimensions using the method of extended poor mans scaling, developed here. We compute the wave function renormalization $Z(omega)$ and also the decay rate near the Fermi energy
We investigate the role of generic scale invariance in a Mott transition from a U(1) spin-liquid insulator to a Landau Fermi-liquid metal, where there exist massless degrees of freedom in addition to quantum critical fluctuations. Here, the Mott quan
We calculate the Landau interaction function f(k,k) for the two-dimensional t-t Hubbard model on the square lattice using second and higher order perturbation theory. Within the Landau-Fermi liquid framework we discuss the behavior of spin and charge