ﻻ يوجد ملخص باللغة العربية
A free Fermi gas has, famously, a superconducting susceptibility that diverges logarithmically at zero temperature. In this paper we ask whether this is still true for a Fermi liquid and find that the answer is that it does {it not}. From the perspective of the renormalization group for interacting fermions, the question arises because a repulsive interaction in the Cooper channel is a marginally irrelevant operator at the Fermi liquid fixed point and thus is also expected to infect various physical quantities with logarithms. Somewhat surprisingly, at least from the renormalization group viewpoint, the result for the superconducting susceptibility is that two logarithms are not better than one. In the course of this investigation we derive a Callan-Symanzik equation for the repulsive Fermi liquid using the momentum-shell renormalization group, and use it to compute the long-wavelength behavior of the superconducting correlation function in the emergent low-energy theory. We expect this technique to be of broader interest.
We present a calculation of the low energy Greens function in $1+epsilon$ dimensions using the method of extended poor mans scaling, developed here. We compute the wave function renormalization $Z(omega)$ and also the decay rate near the Fermi energy
We apply the finite-temperature renormalization-group (RG) to a model based on an effective action with a short-range repulsive interaction and a rotation invariant Fermi surface. The basic quantities of Fermi liquid theory, the Landau function and t
The crossover from fluctuating atomic constituents to a collective state as one lowers temperature or energy is at the heart of the dynamical mean-field theory description of the solid state. We demonstrate that the numerical renormalization group is
Muon spin rotation experiments on a stoichiometric sample of the non-Fermi liquid (NFL) heavy-fermion compound UCu_4Pd, in which recent neutron Bragg scattering measurements are consistent with an ordered structure, indicate that the U-ion susceptibi
We study the one dimensional t-t-J model for generic couplings using two complementary theories, the extremely correlated Fermi liquid theory and time-dependent density matrix renormalization group over a broad energy scale. The two methods provide a