ﻻ يوجد ملخص باللغة العربية
We show that important anomalous features of the normal-state thermoelectric power S of high-Tc materials can be understood as being caused by doping dependent short-range antiferromagnetic correlations. The theory is based on the fluctuation-exchange approximation applied to Hubbard model in the framework of the Kubo formalism. Firstly, the characteristic maximum of S as function of temperature can be explained by the anomalous momentum dependence of the single-particle scattering rate. Secondly, we discuss the role of the actual Fermi surface shape for the occurrence of a sign change of S as a function of temperature and doping.
We address the question of the degree of spatial non-locality of the self energy in the iron-based superconductors, a subject which is receiving considerable attention. Using LiFeAs as a prototypical example, we extract the self energy from angular-r
Besides the chemical constituents, it is the lattice geometry that controls the most important material properties. In many interesting compounds, the arrangement of elements leads to pronounced anisotropies, which reflect into a varying degree of qu
In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electrons kinetic energy leading to remarkable experimental man
In this paper we examine the effects of electron-hole asymmetry as a consequence of strong correlations on the electronic Raman scattering in the normal state of copper oxide high temperature superconductors. Using determinant quantum Monte Carlo sim
Electron interactions are pivotal for defining the electronic structure of quantum materials. In particular, the strong electron Coulomb repulsion is considered the keystone for describing the emergence of exotic and/or ordered phases of quantum matt