ﻻ يوجد ملخص باللغة العربية
The macroscopic dielectric function in the random-phase-approximation without local field effect has been implemented using the local density approximation with an all electron, full-potential linear muffin-tin orbital basis-set. This method is used to investigate the optical properties of the semiconductors Si, Ge, and GaAs under hydrostatic pressure. The pressure dependence of the effective dielectric function is compared to the experimental data of Go~ni and coworkers, and an excellent agreement is found when the so called ``scissors-operator shift (SOS) is used to account for the correct band gap at $Gamma$. The effect of the $3d$ semi-core states in the interband transitions hardly changes the static dielectric function, $epsilon_infty$; however, their contribution to the intensity of absorption for higher photon energies is substantial. The spin-orbit coupling has a significant effect on $epsilon_infty$ of Ge and GaAs, but not of Si. The $E_1$ peak in the dynamical dielectric function is strongly underestimated for Si, but only slightly for Ge and GaAs, suggesting that excitonic effects might be important only for Si.
We present a theoretical study of Ge-core/Si-shell nanocrystals in a wide bandgap matrix and compare the results with experimental data obtained from the samples prepared by co-sputtering. The empirical tight-binding technique allows us to account fo
The archetype cubic chiral magnet MnSi is home to some of the most fascinating states in condensed matter such as skyrmions and a non-Fermi liquid behavior in conjunction with a topological Hall effect under hydrostatic pressure. Using small angle ne
We present an ab-initio study of the phase transition cd->beta-tin in Si and Ge under hydrostatic and non-hydrostatic pressure. For this purpose we have developed a new method to calculate the influence of non-hydrostatic pressure components not only
We investigate the pressure phase diagram of FeTe, predicting structural and magnetic properties in the normal state at zero temperature within density functional theory (DFT). We carefully examined several possible different crystal structures over
We report the effect of hydrostatic pressure (0-1.97GPa) on the superconductivity of BiS2 based CeO0.5F0.5BiS2 compound. The CeO0.5F0.5BiS2 superconductor was synthesized by the solid state reaction route and the compound is crystallized in tetragona