ترغب بنشر مسار تعليمي؟ اضغط هنا

Skyrmions and spirals in MnSi under hydrostatic pressure

133   0   0.0 ( 0 )
 نشر من قبل Lars Bannenberg
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The archetype cubic chiral magnet MnSi is home to some of the most fascinating states in condensed matter such as skyrmions and a non-Fermi liquid behavior in conjunction with a topological Hall effect under hydrostatic pressure. Using small angle neutron scattering, we study the evolution of the helimagnetic, conical and skyrmionic correlations with increasing hydrostatic pressure. We show that the helical propagation vector smoothly reorients from $langle 111 rangle$ to $langle100rangle$ at intermediate pressures. At higher pressures, above the critical pressure, the long-range helimagnetic order disappears at zero magnetic field. Nevertheless, skyrmion lattices and conical spirals form under magnetic fields, in a part of the phase diagram where a topological Hall effect and a non-Fermi liquid behavior have been reported. These unexpected results shed light on the puzzling behavior of MnSi at high pressures and the mechanisms that destabilize the helimagnetic long-range order at the critical pressure.

قيم البحث

اقرأ أيضاً

The effect of hydrostatic pressure (P) on charge density waves (CDW) in YBa2Cu3Oy has recently been controversial. Using NMR, we find that both the short-range CDW in the normal state and the long-range CDW in high fields are, at most, slightly weake ned at P=1.9 GPa. This result is in contradiction with x-ray scattering results finding complete suppression of the CDW at ~1 GPa and we discuss possible explanations of this discrepancy. Quantitative analysis, however, shows that the NMR data is not inconsistent with a disappearance of the CDW on a larger pressure scale, typically ~10-20 GPa. We also propose a simple model reconciling transport data with such a hypothesis, provided the pressure-induced change in doping is taken into account. We conclude that it is therefore possible that most of the spectacular increase in Tc upon increasing pressure up to ~15~GPa arises from a concomitant decrease of CDW strength.
Honeycomb iridates such as $gamma$-Li$_2$IrO$_3$ are argued to realize Kitaev spin-anisotropic magnetic exchange, along with Heisenberg and possibly other couplings. While systems with pure Kitaev interactions are candidates to realize a quantum spin liquid ground state, in $gamma$-Li$_2$IrO$_3$ it has been shown that the balance of magnetic interactions leads to the incommensurate spiral spin order at ambient pressure below 38 K. We study the fragility of this state in single crystals of $gamma$-Li$_2$IrO$_3$ using resonant x-ray scattering (RXS) under applied hydrostatic pressures of up to 3.0 GPa. RXS is a direct probe of the underlying electronic order, and we observe the abrupt disappearance of the $q$=(0.57, 0, 0) spiral order at a critical pressure $P_c = 1.5 $GPa with no accompanying change in the symmetry of the lattice. This dramatic disappearance is in stark contrast with recent studies of $beta$-Li$_2$IrO$_3$ that show continuous suppression of the spiral order in magnetic field; under pressure, a new and possibly nonmagnetic ground state emerges.
Hydrostatic pressure effects on the temperature- and magnetic field dependencies of the in-plane and out-of-plane magnetization of the bi-layered perovskite Sr3Ru2O7 have been studied by SQUID magnetometer measurements under a hydrostatic helium-gas pressure. The anomalously enhanced low-temperature value of the paramagnetic susceptibility has been found to systematically decrease with increasing pressure. The effect is accompanied by an increase of the temperature Tmax of a pronounced peak of susceptibility. Thus, magnetization measurements under hydrostatic pressure reveal that the lattice contraction in the structure of Sr3Ru2O7 promotes antiferromagnetism and not ferromagnetism, contrary to the previous beliefs. The effects can be explained by the enhancement of the inter-bi-layer antiferromagnetic spin coupling, driven by the shortening of the superexchange path, and suppression, due to the band-broadening effect, of competing itinerant ferromagnetic correlations.
131 - N. Auvray , B. Loret , S. Chibani 2021
The superconducting phase of the $mathrm{HgBa}_2mathrm{CuO}_{4+delta}$ (Hg-1201) and $mathrm{HgBa}_2mathrm{Ca}_2mathrm{Cu}_3mathrm{O}_{8+delta}$ (Hg-1223) cuprates has been investigated by Raman spectroscopy under hydrostatic pressure. Our analysis r eveals that the increase of $T_c$ with pressure is slower in Hg-1223 cuprate compared to the Hg-1201 due to a charge carrier concentration imbalance (accentuated by pressure) between the $mathrm{CuO}_2$ layers of Hg-1223. We find that the energy variation under pressure of the apical oxygen mode from which the charge carriers are transferred to the $mathrm{CuO}_2$ layers, is the same for both the Hg-1223 and Hg-1223 cuprates and it is controlled by the inter-layer compressibility. At last, we show that the binding energy of the Cooper pairs related to the maximum amplitude of the $d-$ wave superconducting gap at the anti-nodes, does not follow $T_c$ with pressure. It decreases while $T_c$ increases. In the particular case of Hg-1201, the binding energy collapses from 10 to 2 $K_B T_c$ as the pressure increases up to 10 GPa. These direct spectroscopic observations joined to the fact that the binding energy of the Cooper pairs at the anti-nodes does not follow $T_c$ either with doping, raises the question of its link with the pseudogap energy scale which follows the same trend with doping.
The majority of the iron-based superconductors (FeSCs) exhibit a two-dimensional square lattice structure. Recent reports of pressure-induced superconductivity in the spin-ladder system, BaFe$_2$X$_3$ (X =S,Se), introduce a quasi-one-dimensional prot otype and an insulating parent compound to the FeSCs. Here we report X-ray, neutron diffraction and muon spin relaxation experiments on BaFe$_2$Se$_3$ under hydrostatic pressure to investigate its magnetic and structural properties across the pressure-temperature phase diagram. A structural phase transition was identified at a pressure of 3.7(3) GPa. Neutron diffraction measurements at 6.8(3) GPa and 120 K show that the block magnetism persists even at these high pressures. A steady increase and then fast drop of the magnetic transition temperature $Trm_N$ and greatly reduced moment above the pressure $P_s$ indicate potentially rich and competing phases close to the superconducting phase in this ladder system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا