ترغب بنشر مسار تعليمي؟ اضغط هنا

Exchange Enhancement of the Electron-Phonon Pair Interaction

79   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1994
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The critical temperature of high-$T_c$ superconductors is determined, at least in part, by the electron-phonon coupling. We include the effect of an exchange interaction between the electrons and calculate the renormalization of the bare phonon frequencies and the electron-phonon verticies in a random phase approximation and obtain a strongly enhanced attractive phonon-induced electron-electron interaction. Using Fast Fourier Transform techniques, the weak-coupling selfconsistency equation for the order parameter is solved in the 2D first Brillouin zone for the Emery tight-binding band with different band fillings. The enhancement of $T_c$ arises primarily from the softening of the phonon frequencies rather than the vertex renormalization.



قيم البحث

اقرأ أيضاً

The effect of the exchange interaction on the vibrational properties and on the electron-phonon coupling were investigated in several recent works. In most of the case, exchange tends to enhance the electron-phonon interaction, although the motivatio ns for such behaviour are not completely understood. Here we consider the class of weakly doped two-dimensional multivalley semiconductors and we demonstrate that a more global picture emerges. In particular we show that in these systems, at low enough doping, even a moderate electron-electron interaction enhances the response to any perturbation inducing a valley polarization. If the valley polarization is due to the electron-phonon coupling, the electron-electron interaction results in an enhancement of the superconducting critical temperature. We demonstrate the applicability of the theory by performing random phase approximation and first principles calculations in transition metal chloronitrides. We find that exchange is responsible for the enhancement of the superconducting critical temperature in Li$_x$ZrNCl and that much larger T$_c$s could be obtained in intercalated HfNCl if the synthesis of cleaner samples could remove the Anderson insulating state competing with superconductivity.
118 - Jiang-Tao Liu 2016
The effect of the resonance of electron scattering energy difference and phonon energy on the electron-phonon-electron interaction (EPEI) is studied. Results show that the resonance of electron transition energy and phonon energy can enhance EPEI by a magnitude of 1 to 2. Moreover, the anisotropic S-wave electron or dx2-y2 electron can enhance resonance EPEI, and the self-energy correction of the electron will weaken resonance EPEI. Particularly, the asymmetrical spin-flip scattering process in k space can reduce the effect of electronic self-energy to enhance resonance EPEI
The electronic structure, Fermi surface, angle dependence of the cyclotron masses and extremal cross sections of the Fermi surface, phonon spectra, electron-phonon Eliashberg and transport spectral functions, temperature dependence of electrical resi stivity of the HfB2 diboride were investigated from first principles using the fully relativistic and full potential linear muffin-tin orbital methods. The calculations of the dynamic matrix were carried out within the framework of the linear response theory. A good agreement with experimental data of electron-phonon spectral functions, electrical resistivity, cyclotron masses and extremal cross sections of the Fermi surface was achieved.
172 - Rayda Gammag 2012
We uncover that the competition between electron-electron correlations and electron-phonon interactions gives rise to unexpectedly huge enhancement of the superconducting transition temperature, several hundreds percent larger ($geq$ 200 K) than that of the case when only one of the two is taken into account ($sim$ 30 K). Our renormalization group analysis claims that this mechanism for the enhancement of the critical temperature is not limited on superconductivity but applied to various Fermi surface instabilities, proposing an underlying universal structure, which turns out to be essentially identical to that of a recent study [Phys. Rev. Lett. {bf 108}, 046601 (2012)] on the enhancement of the Kondo temperature in the presence of Rashba spin-orbit interactions. We also discuss the stability of superconductivity against nonmagnetic randomness.
Motivated by the recent discovery of superconductivity in Ca- and Yb-intercalated graphite (CaC$_{6}$ and YbC$_{6}$) and from the ongoing debate on the nature and role of the interlayer state in this class of compounds, in this work we critically stu dy the electron-phonon properties of a simple model based on primitive graphite. We show that this model captures an essential feature of the electron-phonon properties of the Graphite Intercalation Compounds (GICs), namely, the existence of a strong dormant electron-phonon interaction between interlayer and $pi ^{ast}$ electrons, for which we provide a simple geometrical explanation in terms of NMTO Wannier-like functions. Our findings correct the oversimplified view that nearly-free-electron states cannot interact with the surrounding lattice, and explain the empirical correlation between the filling of the interlayer band and the occurrence of superconductivity in Graphite-Intercalation Compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا