ﻻ يوجد ملخص باللغة العربية
The critical temperature of high-$T_c$ superconductors is determined, at least in part, by the electron-phonon coupling. We include the effect of an exchange interaction between the electrons and calculate the renormalization of the bare phonon frequencies and the electron-phonon verticies in a random phase approximation and obtain a strongly enhanced attractive phonon-induced electron-electron interaction. Using Fast Fourier Transform techniques, the weak-coupling selfconsistency equation for the order parameter is solved in the 2D first Brillouin zone for the Emery tight-binding band with different band fillings. The enhancement of $T_c$ arises primarily from the softening of the phonon frequencies rather than the vertex renormalization.
The effect of the exchange interaction on the vibrational properties and on the electron-phonon coupling were investigated in several recent works. In most of the case, exchange tends to enhance the electron-phonon interaction, although the motivatio
The effect of the resonance of electron scattering energy difference and phonon energy on the electron-phonon-electron interaction (EPEI) is studied. Results show that the resonance of electron transition energy and phonon energy can enhance EPEI by
The electronic structure, Fermi surface, angle dependence of the cyclotron masses and extremal cross sections of the Fermi surface, phonon spectra, electron-phonon Eliashberg and transport spectral functions, temperature dependence of electrical resi
We uncover that the competition between electron-electron correlations and electron-phonon interactions gives rise to unexpectedly huge enhancement of the superconducting transition temperature, several hundreds percent larger ($geq$ 200 K) than that
Motivated by the recent discovery of superconductivity in Ca- and Yb-intercalated graphite (CaC$_{6}$ and YbC$_{6}$) and from the ongoing debate on the nature and role of the interlayer state in this class of compounds, in this work we critically stu