ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic magnetic field dependence of many-body enhanced electron tunnelling through a quantum dot

71   0   0.0 ( 0 )
 نشر من قبل Evgenii Vdovin
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effect of an applied magnetic field on resonant tunneling of electrons through the bound states of self-assembled InAs quantum dots (QDs) embedded within an (AlGa)As tunnel barrier. At low temperatures (no more than 2 K), a magnetic field B applied either parallel or perpendicular to the direction of current flow causes a significant enhancement of the tunnel current. For the latter field configuration, we observe a strong angular anisotropy of the enhanced current when B is rotated in the plane of the quantum dot layer. We attribute this behavior to the effect of the lowered symmetry of the QD eigenfunctions on the electron-electron interaction.



قيم البحث

اقرأ أيضاً

Currents in a few-electron parabolic quantum dot placed into a perpendicular magnetic field are considered. We show that traditional ways of investigating the Wigner crystallization by studying the charge density correlation function can be supplemen ted by the examination of the density-current correlator. However, care must be exercised when constructing the correct projection of the multi-dimensional wave function space. The interplay between the magnetic field and Euler-liquid-like behavior of the electron liquid gives rise to persistent and local currents in quantum dots. We demonstrate these phenomena by collating a quasi-classical theory valid in high magnetic fields and an exact numerical solution of the many-body problem.
Electron transport properties in a parallel double-quantum-dot structure with three-terminals are theoretically studied. By introducing a local Rashba spin-orbit coupling, we find that an incident electron from one terminal can select a specific term inal to depart from the quantum dots according to its spin state. As a result, spin polarization and spin separation can be simultaneously realized in this structure. And spin polarizations in different terminals can be inverted by tuning the structure parameters. The underlying quantum interference that gives rise to such a result is analyzed in the language of Feynman paths for the electron transmission.
We report transport measurements on a semiconductor quantum dot with a small number of confined electrons. In the Coulomb blockade regime, conduction is dominated by cotunneling processes. These can be either elastic or inelastic, depending on whethe r they leave the dot in its ground state or drive it into an excited state, respectively. We are able to discriminate between these two contributions and show that inelastic events can occur only if the applied bias exceeds the lowest excitation energy. Implications to energy-level spectroscopy are discussed.
147 - M. I. Dykman , T. Sharpee , 2000
We consider the effect of electron correlations on tunneling from a 2D electron layer in a magnetic field parallel to the layer. A tunneling electron can exchange its momentum with other electrons, which leads to an exponential increase of the tunnel ing rate compared to the single-electron approximation. Explicit results are obtained for a Wigner crystal. They provide a qualitative and quantitative explanation of the data on electrons on helium. We also discuss tunneling in semiconductor heterostructures.
The lifetime of two dimensional electrons in GaAs quantum wells, placed in weak quantizing magnetic fields, is measured using a simple transport method in broad range of temperatures from 0.3 K to 20 K. The temperature variations of the electron life time are found to be in good agreement with conventional theory of electron-electron scattering in 2D systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا