ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-dependent electron transport through a parallel double-quantum-dot structure

316   0   0.0 ( 0 )
 نشر من قبل Weijiang Gong
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electron transport properties in a parallel double-quantum-dot structure with three-terminals are theoretically studied. By introducing a local Rashba spin-orbit coupling, we find that an incident electron from one terminal can select a specific terminal to depart from the quantum dots according to its spin state. As a result, spin polarization and spin separation can be simultaneously realized in this structure. And spin polarizations in different terminals can be inverted by tuning the structure parameters. The underlying quantum interference that gives rise to such a result is analyzed in the language of Feynman paths for the electron transmission.



قيم البحث

اقرأ أيضاً

We study transport through a quantum dot side-coupled to two parallel Luttinger liquid leads in the presence of a Coulombic dot-lead interaction. This geometry enables an exact treatment of the inter-lead Coulomb interactions. We find that for dots s ymmetrically disposed between the two leads the correlation of charge fluctuations between the two leads can lead to an enhancement of the current at the Coulomb-blockade edge and even to a negative differential conductance. Moving the dot off center or separating the wires further converts the enhancement to a suppression.
155 - H. W. Liu , T. Fujisawa , Y. Ono 2008
We present measurements of resonant tunneling through discrete energy levels of a silicon double quantum dot formed in a thin silicon-on-insulator layer. In the absence of piezoelectric phonon coupling, spontaneous phonon emission with deformation-po tential coupling accounts for inelastic tunneling through the ground states of the two dots. Such transport measurements enable us to observe a Pauli spin blockade due to effective two-electron spin-triplet correlations, evident in a distinct bias-polarity dependence of resonant tunneling through the ground states. The blockade is lifted by the excited-state resonance by virtue of efficient phonon emission between the ground states. Our experiment demonstrates considerable potential for investigating silicon-based spin dynamics and spin-based quantum information processing.
Quantum spin transport is studied in an interacting quantum dot. It is found that a conductance plateau emerges in the non-linear charge conductance by a spin bias in the Kondo regime. The conductance plateau, as a complementary to the Kondo peak, or iginates from the strong electron correlation and exchange processes in the quantum dot, and can be regarded as one of the characteristics in quantum spin transport.
We study thermoelectric transport through double quantum dots system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green function in the linear response regime. It is found that the thermoelectric coefficients are strongly dependent on the splitting of interdot coupling, the relative magnetic configurations and the spin polarization of leads. In particular, the thermoelectric efficiency can achieve considerable value in parallel configuration when the effective interdot coupling and tunnel coupling between QDs and the leads for spin-down electrons are small. Moreover, the thermoelectric efficiency increases with the intradot Coulomb interactions increasing and can reach very high value at an appropriate temperature. In the presence of the magnetic field, the spin accumulation in leads strongly suppresses the thermoelectric efficiency and a pure spin thermopower can be obtained.
154 - Shi-Hua Ouyang , Chi-Hang Lam , 2009
We study shot noise in tunneling current through a double quantum dot connected to two electric leads. We derive two master equations in the occupation-state basis and the eigenstate basis to describe the electron dynamics. The approach based on the occupation-state basis, despite widely used in many previous studies, is valid only when the interdot coupling strength is much smaller than the energy difference between the two dots. In contrast, the calculations using the eigenstate basis are valid for an arbitrary interdot coupling. We show that the master equation in the occupation-state basis includes only the low-order terms with respect to the interdot coupling compared with the more accurate master equation in the eigenstate basis. Using realistic model parameters, we demonstrate that the predicted currents and shot-noise properties from the two approaches are significantly different when the interdot coupling is not small. Furthermore, properties of the shot noise predicted using the eigenstate basis successfully reproduce qualitative features found in a recent experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا