ترغب بنشر مسار تعليمي؟ اضغط هنا

Poisson-Bracket Approach to the Dynamics of Bent-Core Molecules

209   0   0.0 ( 0 )
 نشر من قبل William Kung
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We generalize our previous work on the phase stability and hydrodynamic of polar liquid crystals possessing local uniaxial $C_{infty v}$-symmetry to biaxial systems exhibiting local $C_{2v}$-symmetry. Our work is motivated by the recently discovered examples of thermotropic biaxial nematic liquid crystals comprising bent-core mesogens, whose molecular structure is characterized by a non-polar body axis $({bf{n}})$ as well as a polar axis $({bf{p}})$ along the bisector of the bent mesogenic core which is coincident with a large, transverse dipole moment. The free energy for this system differs from that of biaxial nematic liquid crystals in that it contains terms violating the ${bf{p}}to -{bf{p}}$ symmetry. We show that, in spite of a general splay instability associated with these parity-odd terms, a uniform polarized biaxial state can be stable in a range of parameters. We then derive the hydrodynamic equations of the system, via the Poisson-bracket formalism, in the polarized state and comment on the structure of the corresponding linear hydrodynamic modes. In our Poisson-bracket derivation, we also compute the flow-alignment parameters along the three symmetry axes in terms of microscopic parameters associated with the molecular geometry of the constituent biaxial mesogens.



قيم البحث

اقرأ أيضاً

64 - T. Koide 2021
We introduce the Poisson bracket operator which is an alternative quantum counterpart of the Poisson bracket. This operator is defined using the operator derivative formulated in quantum analysis and is equivalent to the Poisson bracket in the classi cal limit. Using this operator, we derive the quantum canonical equation which describes the time evolution of operators. In the standard applications of quantum mechanics, the quantum canonical equation is equivalent to the Heisenberg equation. At the same time, the quantum canonical equation is applicable to c-number canonical variables and then coincides with the canonical equation in classical mechanics. Therefore the Poisson bracket operator enables us to describe classical and quantum behaviors in a unified way. Moreover, the quantum canonical equation is applicable to non-standard system where the Heisenberg is not applicable. As an example, we consider the application to the system where a c-number and a q-number particles coexist. The derived dynamics satisfies the Ehrenfest theorem and the energy and momentum conservations.
100 - Thomas Machon 2020
Let $M$ be a smooth closed orientable manifold and $mathcal{P}(M)$ the space of Poisson structures on $M$. We construct a Poisson bracket on $mathcal{P}(M)$ depending on a choice of volume form. The Hamiltonian flow of the bracket acts on $mathcal{P} (M)$ by volume-preserving diffeomorphism of $M$. We then define an invariant of a Poisson structure that describes fixed points of the flow equation and compute it for regular Poisson 3-manifolds, where it detects unimodularity. For unimodular Poisson structures we define a further, related Poisson bracket and show that for symplectic structures the associated invariant counting fixed points of the flow equation is given in terms of the $d d^Lambda$ and $d+ d^Lambda$ symplectic cohomology groups defined by Tseng and Yau.
Spontaneous onset of a low temperature topologically ordered phase in a 2-dimensional (2D) lattice model of uniaxial liquid crystal (LC) was debated extensively pointing to a suspected underlying mechanism affecting the RG flow near the topological f ixed point. A recent MC study clarified that a prior crossover leads to a transition to nematic phase. The crossover was interpreted as due to the onset of a perturbing relevant scaling field originating from the extra spin degree of freedom. As a counter example and in support of this hypothesis, we now consider V-shaped bent-core molecules with rigid rod-like segments connected at an assigned angle. The two segments of the molecule interact with the segments of all the nearest neighbours on a square lattice, prescribed by a biquadratic interaction. We compute equilibrium averages of different observables with Monte Carlo techniques as a function of temperature and sample size. For the chosen molecular bend angle and symmetric inter-segment interaction between neighbouirng molecules, the 2D system shows two transitions as a function of T: the higher one at T1 leads to a topological ordering of defects associated with the major molecular axis without a crossover, imparting uniaxial symmetry to the medium described by the first fundamental group of the order parameter space $pi_{1}$= $Z_{2}$ (inversion symmetry). The second at T2 leads to a medium displaying biaxial symmetry with $pi_{1}$ = Q (quaternion group). The biaxial phase shows a self-similar microscopic structure with the three axes showing power law correlations with vanishing exponents as the temperature decreases.
The bent-core liquid crystals (LCs) are highly regarded as the next-generation materials for electro-optic devices. The nematic (N) phase of these LCs possesses highly ordered smectic-like cybotactic clusters which are promising in terms of ferroelec tric-like behaviour in the N phase itself. We have studied a one-dimensional (1D) Landau-deGennes model of spatially inhomogeneous order parameters for the N phase of bent-core LCs. We investigate the effects of spatial confinement and coupling (between these clusters and the surrounding LC molecules) on the order parameters to model cluster formation in recently reported experiments. The coupling is found to increase the cluster order parameter significantly, suggesting an enhancement in the cluster formation and could also predict a possible transition to a phase with weak nematic-like ordering in the vicinity of nematic-isotropic transition upon appreciable increase of the coupling parameter {gamma}.
The equilibrium properties of ionic microgels are investigated using a combination of the Poisson-Boltzmann and Flory theories. Swelling behavior, density profiles, and effective charges are all calculated in a self-consistent way. Special attention is given to the effects of salinity on these quantities. It is found that the equilibrium microgel size is strongly influenced by the amount of added salt. Increasing the salt concentration leads to a considerable reduction of the microgel volume, which therefore releases its internal material -- solvent molecules and dissociated ions -- into the solution. Finally, the question of charge renormalization of ionic microgels in the context of the cell model is briefly addressed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا