ﻻ يوجد ملخص باللغة العربية
We introduce the Poisson bracket operator which is an alternative quantum counterpart of the Poisson bracket. This operator is defined using the operator derivative formulated in quantum analysis and is equivalent to the Poisson bracket in the classical limit. Using this operator, we derive the quantum canonical equation which describes the time evolution of operators. In the standard applications of quantum mechanics, the quantum canonical equation is equivalent to the Heisenberg equation. At the same time, the quantum canonical equation is applicable to c-number canonical variables and then coincides with the canonical equation in classical mechanics. Therefore the Poisson bracket operator enables us to describe classical and quantum behaviors in a unified way. Moreover, the quantum canonical equation is applicable to non-standard system where the Heisenberg is not applicable. As an example, we consider the application to the system where a c-number and a q-number particles coexist. The derived dynamics satisfies the Ehrenfest theorem and the energy and momentum conservations.
Let $M$ be a smooth closed orientable manifold and $mathcal{P}(M)$ the space of Poisson structures on $M$. We construct a Poisson bracket on $mathcal{P}(M)$ depending on a choice of volume form. The Hamiltonian flow of the bracket acts on $mathcal{P}
We apply the projection operator method (POM) to $phi^4$ theory and derive both quantum and semiclassical equations of motion for the soft modes. These equations have no time-convolution integral term, in sharp contrast with other well-known results
Time operator is studied on the basis of field quantization, where the difficulty stemming from Paulis theorem is circumvented by borrowing ideas from the covariant quantization of the bosonic string, i.e., one can remove the negative energy states b
We generalize our previous work on the phase stability and hydrodynamic of polar liquid crystals possessing local uniaxial $C_{infty v}$-symmetry to biaxial systems exhibiting local $C_{2v}$-symmetry. Our work is motivated by the recently discovered
In quantum mechanics textbooks the momentum operator is defined in the Cartesian coordinates and rarely the form of the momentum operator in spherical polar coordinates is discussed. Consequently one always generalizes the Cartesian prescription to o