ترغب بنشر مسار تعليمي؟ اضغط هنا

Stationary states in Langevin dynamics under asymmetric Levy noises

77   0   0.0 ( 0 )
 نشر من قبل Bartlomiej Dybiec
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Properties of systems driven by white non-Gaussian noises can be very different from these systems driven by the white Gaussian noise. We investigate stationary probability densities for systems driven by $alpha$-stable Levy type noises, which provide natural extension to the Gaussian noise having however a new property mainly a possibility of being asymmetric. Stationary probability densities are examined for a particle moving in parabolic, quartic and in generic double well potential models subjected to the action of $alpha$-stable noises. Relevant solutions are constructed by methods of stochastic dynamics. In situations where analytical results are known they are compared with numerical results. Furthermore, the problem of estimation of the parameters of stationary densities is investigated.



قيم البحث

اقرأ أيضاً

107 - A. A. Dubkov , B. Spagnolo 2008
The functional method to derive the fractional Fokker-Planck equation for probability distribution from the Langevin equation with Levy stable noise is proposed. For the Cauchy stable noise we obtain the exact stationary probability density function of Levy flights in different smooth potential profiles. We find confinement of the particle in the superdiffusion motion with a bimodal stationary distribution for all the anharmonic symmetric monostable potentials investigated. The stationary probability density functions show power-law tails, which ensure finiteness of the variance. By reviewing recent results on these statistical characteristics, the peculiarities of Levy flights in comparison with ordinary Brownian motion are discussed.
Levy Flights are paradigmatic generalised random walk processes, in which the independent stationary increments---the jump lengths---are drawn from an $alpha$-stable jump length distribution with long-tailed, power-law asymptote. As a result, the var iance of Levy Flights diverges and the trajectory is characterised by occasional extremely long jumps. Such long jumps significantly decrease the probability to revisit previous points of visitation, rendering Levy Flights efficient search processes in one and two dimensions. To further quantify their precise property as random search strategies we here study the first-passage time properties of Levy Flights in one-dimensional semi-infinite and bounded domains for symmetric and asymmetric jump length distributions. To obtain the full probability density function of first-passage times for these cases we employ two complementary methods. One approach is based on the space-fractional diffusion equation for the probability density function, from which the survival probability is obtained for different values of the stable index $alpha$ and the skewness (asymmetry) parameter $beta$. The other approach is based on the stochastic Langevin equation with $alpha$-stable driving noise. Both methods have their advantages and disadvantages for explicit calculations and numerical evaluation, and the complementary approach involving both methods will be profitable for concrete applications. We also make use of the Skorokhod theorem for processes with independent increments and demonstrate that the numerical results are in good agreement with the analytical expressions for the probability density function of the first-passage times.
The multi-dimensional non-linear Langevin equation with multiplicative Gaussian white noises in Itos sense is made covariant with respect to non-linear transform of variables. The formalism involves no metric or affine connection, works for systems w ith or without detailed balance, and is substantially simpler than previous theories. Its relation with deterministic theory is clarified. The unitary limit and Hermitian limit of the theory are examined. Some implications on the choices of stochastic calculus are also discussed.
We investigate the first-passage dynamics of symmetric and asymmetric Levy flights in a semi-infinite and bounded intervals. By solving the space-fractional diffusion equation, we analyse the fractional-order moments of the first-passage time probabi lity density function for different values of the index of stability and the skewness parameter. A comparison with results using the Langevin approach to Levy flights is presented. For the semi-infinite domain, in certain special cases analytic results are derived explicitly, and in bounded intervals a general analytical expression for the mean first-passage time of Levy flights with arbitrary skewness is presented. These results are complemented with extensive numerical analyses.
We study single crystals of Dy$_2$Ti$_2$O$_7$ and Ho$_2$Ti$_2$O$_7$ under magnetic field and stress applied along their [001] direction. We find that many of the features that the emergent gauge field of spin ice confers to the macroscopic magnetic p roperties are preserved in spite of the finite temperature. The magnetisation vs. field shows an upward convexity within a broad range of fields, while the static and dynamic susceptibilities present a peculiar peak. Following this feature for both compounds, we determine a single experimental transition curve: that for the Kasteleyn transition in three dimensions, proposed more than a decade ago. Additionally, we observe that compression up to $-0.8%$ along [001] does not significantly change the thermodynamics. However, the dynamical response of Ho$_2$Ti$_2$O$_7$ is quite sensitive to changes introduced in the ${rm Ho}^{3+}$ environment. Uniaxial compression can thus open up experimental access to equilibrium properties of spin ice at low temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا