ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Phase Control in Monolayer Films by Substrate Tuning

228   0   0.0 ( 0 )
 نشر من قبل Paolo Ferriani
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose to tailor exchange interactions in magnetic monolayer films by tuning the adjacent non-magnetic substrate. As an example, we demonstrate a ferromagnetic-antiferromagnetic phase transition for one monolayer Fe on a Ta(x)W(1-x)(001) surface as a function of the Ta concentration. At the critical Ta concentration, the nearest-neighbor exchange interaction is small and the magnetic phase space is dramatically broadened. Complex magnetic order such as spin-spirals, multiple-Q, or even disordered local moment states can occur, offering the possibility to store information in terms of ferromagnetic dots in an otherwise zero-magnetization state matrix.

قيم البحث

اقرأ أيضاً

Yttrium Iron Garnet (YIG) and bismuth (Bi) substituted YIG (Bi0.1Y2.9Fe5O12, BYG) films are grown in-situ on single crystalline Gadolinium Gallium Garnet (GGG) substrates [with (100) and (111) orientations] using pulsed laser deposition (PLD) techniq ue. As the orientation of the Bi-YIG film changes from (100) to (111), the lattice constant is enhanced from 12.384 {AA} to 12.401 {AA} due to orientation dependent distribution of Bi3+ ions at dodecahedral sites in the lattice cell. Atomic force microscopy (AFM) images show smooth film surfaces with roughness 0.308 nm in Bi-YIG (111). The change in substrate orientation leads to the modification of Gilbert damping which, in turn, gives rise to the enhancement of ferromagnetic resonance (FMR) line width. The best values of Gilbert damping are found to be (0.54)*10-4, for YIG (100) and (6.27)*10-4, for Bi-YIG (111) oriented films. Angle variation measurements of the Hr are also performed, that shows a four-fold symmetry for the resonance field in the (100) grown film. In addition, the value of effective magnetization (4{pi}Meff) and extrinsic linewidth ({Delta}H0) are observed to be dependent on substrate orientation. Hence PLD growth can assist single-crystalline YIG and BYG films with a perfect interface that can be used for spintronics and related device applications.
251 - S. Rout , N. Popovici , S. Dalui 2013
This paper reports on the structural and optical properties of Co-doped TiO2 thin films grown onto (0001) Al2O3 substrates by non-reactive pulsed laser deposition (PLD) using argon as buffer gas. It is shown that by keeping constant the substrate tem perature at as low as 310 C and varying only the background gas pressure between 7 Pa and 70 Pa, it is possible to grow either epitaxial rutile or pure anatase thin films, as well as films with a mixture of both polymorphs. The optical band gaps of the films are red shifted in comparison to the values usually reported for undoped TiO2, which is consistent with n-type doping of the TiO2 matrix. Such band gap red shift brings the absorption edge of the Co-doped TiO2 films into the visible region, which might favour their photocatalytic activity. Furthermore, the band gap red shift depends on the films phase composition, increasing with the increase of the Urbach energy for increasing rutile content.
Since oxide materials like Sr$_2$FeMoO$_6$ are usually applied as thin films, we studied the effect of biaxial strain, resulting from the substrate, on the electronic and magnetic properties and, in particular, on the formation energy of point defect s. From our first-principles calculations, we determined that the probability of forming point defects - like vacancies or substitutions - in Sr$_2$FeMoO$_6$ could be adjusted by choosing a proper substrate. For example, the amount of anti-site disorder can be reduced with compressive strain in order to obtain purer Sr$_2$FeMoO$_6$ as needed for spintronic applications, while the formation of oxygen vacancies is more likely for tensile strain, which improves the functionality of Sr$_2$FeMoO$_6$ as a basis material of solid oxide fuel cells. In addition, we were also be able to include the oxygen partial pressure in our study by using its thermodynamic connection with the chemical potential. Strontium vacancies become for example more likely than oxygen vacancies at a pressure of 1$,$bar. Hence, this degree of freedom might offer in general another potential method for defect engineering in oxides besides, e.g., experimental growth conditions like temperature or gas pressure.
To tune the magnetic properties of hexagonal ferrites, a family of magnetoelectric multiferroic materials, by atomic-scale structural engineering, we studied the effect of structural distortion on the magnetic ordering temperature (TN). Using the sym metry analysis, we show that unlike most antiferromagnetic rare-earth transition-metal perovskites, a larger structural distortion leads to a higher TN in hexagonal ferrites and manganites, because the K3 structural distortion induces the three-dimensional magnetic ordering, which is forbidden in the undistorted structure by symmetry. We also revealed a near-linear relation between TN and the tolerance factor and a power-law relation between TN and the K3 distortion amplitude. Following the analysis, a record-high TN (185 K) among hexagonal ferrites was predicted in hexagonal ScFeO3 and experimentally verified in epitaxially stabilized films. These results add to the paradigm of spin-lattice coupling in antiferromagnetic oxides and suggests further tunability of hexagonal ferrites if more lattice distortion can be achieved.
Ferroelectric materials are interesting candidates for future photovoltaic applications due to their potential to overcome the fundamental limits of conventional single bandgap semiconductor-based solar cells. Although a more efficient charge separat ion and above bandgap photovoltages are advantageous in these materials, tailoring their photovoltaic response using ferroelectric functionalities remains puzzling. Here we address this issue by reporting a clear hysteretic character of the photovoltaic effect as a function of electric field and its dependence on the poling history. Furthermore, we obtain insight into light induced nonequilibrium charge carrier dynamics in Bi2FeCrO6 films involving not only charge generation, but also recombination processes. At the ferroelectric remanence, light is able to electrically depolarize the films with remanent and transient effects as evidenced by electrical and piezoresponse force microscopy (PFM) measurements. The hysteretic nature of the photovoltaic response and its nonlinear character at larger light intensities can be used to optimize the photovoltaic performance of future ferro-electric-based solar cells.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا