ﻻ يوجد ملخص باللغة العربية
Ferroelectric materials are interesting candidates for future photovoltaic applications due to their potential to overcome the fundamental limits of conventional single bandgap semiconductor-based solar cells. Although a more efficient charge separation and above bandgap photovoltages are advantageous in these materials, tailoring their photovoltaic response using ferroelectric functionalities remains puzzling. Here we address this issue by reporting a clear hysteretic character of the photovoltaic effect as a function of electric field and its dependence on the poling history. Furthermore, we obtain insight into light induced nonequilibrium charge carrier dynamics in Bi2FeCrO6 films involving not only charge generation, but also recombination processes. At the ferroelectric remanence, light is able to electrically depolarize the films with remanent and transient effects as evidenced by electrical and piezoresponse force microscopy (PFM) measurements. The hysteretic nature of the photovoltaic response and its nonlinear character at larger light intensities can be used to optimize the photovoltaic performance of future ferro-electric-based solar cells.
In purely c-axis oriented PbZr$_{0.2}$Ti$_{0.8}$O$_3$ ferroelectric thin films, a lateral piezoresponse force microscopy signal is observed at the position of 180{deg}domain walls, where the out-of-plane oriented polarization is reversed. Using elect
Ferroelectric photovoltaics (FPVs) have drawn much attention owing to their high stability, environmental safety, anomalously high photovoltages, coupled with reversibly switchable photovoltaic responses. However, FPVs suffer from extremely low photo
Using the self-consistent Landau-Ginzburg-Devonshire approach we simulate and analyze the spontaneous formation of the domain structure in thin ferroelectric films covered with the surface screening charge of the specific nature (Bardeen-type surface
The critical impact of epitaxial stress on the stabilization of the ferroelectric orthorhombic phase of hafnia is proved. Epitaxial bilayers of Hf0.5Zr0.5O2 and La0.67Sr0.33MnO3 electrodes were grown on a set of single crystalline oxide 001-oriented,
We propose to tailor exchange interactions in magnetic monolayer films by tuning the adjacent non-magnetic substrate. As an example, we demonstrate a ferromagnetic-antiferromagnetic phase transition for one monolayer Fe on a Ta(x)W(1-x)(001) surface