ﻻ يوجد ملخص باللغة العربية
Recent advancement in fabrication technologies enable the construction of nano-objects with rather rich internal structures such as double or triple quantum dots, which can then be regarded as artificial molecules. The main new ingredient in the study of the Kondo effect in such artificial (and also in natural) molecules is the internal symmetry of the nano-object, which proves to play a crucial role in the construction of the effective exchange Hamiltonian. This internal symmetry combines continuous spin symmetry SU(2) and discrete point symmetry (such as mirror reflections for double dots or discrete $C_{3v}$ rotation for equilateral triangular dots. When these artificial molecules are attached to metallic leads, the set of dot operators appearing in the effective exchange Hamiltonian generate a group which is refereed to as the dynamical symmetry group of the system dot-leads [mostly SO(n) or SU(n)], and the pertinent group parameters (such as the value of $n$) can be controlled by experiment. In this short review we clarify and expand these concepts and discuss some specific examples. In particular we concentrate on the difference between the chain geometry and the ring geometry. When a perpendicular magnetic field is applied in the ring geometry, its gauge symmetry U(1) is involved in the interplay with the spin and orbital dynamics of the dot.
We show that the paradigmatic Ruderman-Kittel-Kasuya-Yosida (RKKY) description of two local magnetic moments coupled to propagating electrons breaks down in helical Luttinger Liquids when the electron interaction is stronger than some critical value.
Magnetic molecules adsorbed on a superconductor give rise to a local competition of Cooper pair and Kondo singlet formation inducing subgap bound states. For Manganese-phthalocyanine molecules on a Pb(111) substrate, scanning tunneling spectroscopy r
Kondo coupling of f and conduction electrons is a common feature of f-electron intermetallics. Similar effects should occur in carbon ring systems(metallocenes). Evidence for Kondo coupling in Ce(C8H8)2 (cerocene) and the ytterbocene Cp*2Yb(bipy) is
We apply our recently developed, selfconsistent renormalization group (RG) method to STM spectra of a two-impurity Kondo system consisting of two cobalt atoms connected by a one-dimensional Cu chain on a Cu surface. This RG method was developed to de
We have studied the interplay of an Anderson impurity in Landau quantized graphene, with special emphasis on the influence of the chemical potential. Within the slave-boson mean-field theory, we found reentrant Kondo behaviour by varying the chemical