ترغب بنشر مسار تعليمي؟ اضغط هنا

Coupled Breathing Oscillations of Two-Component Fermion Condensates in Deformed Traps

31   0   0.0 ( 0 )
 نشر من قبل Tomoyuki Maruyama
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate collective excitations coupled with monopole and quadrupole oscillations in two-component fermion condensates in deformed traps. The frequencies of monopole and dipole modes are calculated using Thomas-Fermi theory and the scaling approximation. When the trap is largely deformed, these collective motions are decoupled to the transverse and longitudinal breathing oscillation modes. As the trap approaches becoming spherical, however, they are coupled and show complicated behaviors.



قيم البحث

اقرأ أيضاً

We consider a two-component Bose-Einstein condensate (BEC) in a ring trap in a rotating frame, and show how to determine the response of such a configuration to being in a rotating frame, via accumulation of a Sagnac phase. This may be accomplished e ither through population oscillations, or the motion of spatial density fringes. We explicitly include the effect of interactions via a mean-field description, and study the fidelity of the dynamics relative to an ideal configuration.
We theoretically investigate breathing oscillations of weakly-interacting degenerate Fermi gases in highly-anisotropic harmonic oscillator traps. If the traps are not highly anisotropic, the fermions behave as three-dimensional (3D) gases and exhibit the coupled breathing oscillations as studied in a previous paper [T. Maruyama and T. Nishimura, Phys. Rev. A 75 (2007) 033611]; Otherwise the fermions exhibit quasi-low-dimensional (QLD) properties derived from specific structures in their single-particle spectrum, called QLD structures. In the present paper, we focus on effects of the QLD structures on the breathing oscillations of the two-component fermions with symmetric population densities. Here we develop the semi-classical Thomas-Fermi approximation extended to the highly-anisotropic systems and obtain the collective frequencies in the sum-rule-scaling method and perturbation theory. As a result, we reveal that the effects of the QLD structures can not be seen in the transverse modes in the first-order perturbation and appear only in the longitudinal modes with hierarchies reflecting the QLD structures. We also demonstrate time-evolution of the oscillations in the present framework.
We propose and analyze a general mechanism of disorder-induced order in two-component Bose-Einstein condensates, analogous to corresponding effects established for XY spin models. We show that a random Raman coupling induces a relative phase of pi/2 between two BECs and that the effect is robust. We demonstrate it in 1D, 2D and 3D at T=0 and present evidence that it persists at small T>0. Applications to phase control in ultracold spinor condensates are discussed.
547 - M. Abad , A. Recati 2013
We present a self-consistent study of coherently coupled two-component Bose-Einstein condensates. Finite spin-flipping coupling changes the first order demixing phase transition for Bose-Bose mixtures to a second order phase transition between an unp olarized and a polarized state. We analise the excitation spectrum and the structure factor along the transition for a homogeneous system. We discuss the main differences at the transition between a coherent coupled gas and a two-component mixture. We finally study the ground state when spin-(in)dependent trapping potentials are added to the system, focusing on optical lattices, which give rise to interesting new configurations.
378 - Ran Qi , Xiao-Lu Yu , Z. B. Li 2008
We investigate the non-Abelian Josephson effect in spinor Bose-Einstein condensates with double optical traps. We propose, for the first time, a real physical system which contains non-Abelian Josephson effects. The collective modes of this weak coup ling system have very different density and spin tunneling characters comparing to the Abelian case. We calculate the frequencies of the pseudo Goldstone modes in different phases between two traps respectively, which are a crucial feature of the non-Abelian Josephson effects. We also give an experimental protocol to observe this novel effect in future experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا