ترغب بنشر مسار تعليمي؟ اضغط هنا

Elastomeric carbon nanotube circuits for local strain sensing

77   0   0.0 ( 0 )
 نشر من قبل Marc Bockrath
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use elastomeric polydimethylsiloxane substrates to strain single-walled carbon nanotubes and modulate their electronic properties, with the aim of developing flexible materials that can sense local strain. We demonstrate micron-scale nanotube devices that can be cycled repeatedly through strains as high as 20% while providing reproducible local strain transduction by via the device resistance. We also compress individual nanotubes, and find they undergo an undulatory distortion with a characteristic spatial period of 100-200 nm. The observed period can be understood by the mechanical properties of nanotubes and the substrate in conjunction with continuum elasticity theory. These could potentially be used to create superlattices within individual nanotubes, enabling novel devices and applications.



قيم البحث

اقرأ أيضاً

157 - A. Misra , C. Daraio 2008
We report on the nano-electron beam assisted fabrication of atomically sharp iron-based tips and on the creation of a nano-soldering iron for nano-interconnects using Fe-filled multiwalled carbon nanotubes (MWCNTs). High energy electron beam machinin g has been proven a powerful tool to modify desired nanostructures for technological applications and to form molecular junctions and interconnections between carbon nanotubes. Recent studies showed the high degree of complexity in the creation of direct interconnections between multiwalled and CNTs having dissimilar diameters. Our technique allows for carving a MWCNT into a nanosoldering iron that was demonstrated capable of joining two separated halves of a tube. This approach could easily be extended to the interconnection of two largely dissimilar CNTs, between a CNT and a nanowire or between two nanowires.
New forms of carbon-based materials have received great attention, and the developed materials have found many applications in nanotechnology. Interesting novel carbon structures include the carbon peapods, which are comprised of fullerenes encapsula ted within carbon nanotubes. Peapod-like nanostructures have been successfully synthesized, and have been used in optical modulation devices, transistors, solar cells, and in other devices. However, the mechanical properties of these structures are not completely elucidated. In this work, we investigated, using fully atomistic molecular dynamics simulations, the deformation of carbon peapods under high-strain rate conditions, which are achieved by shooting the peapods at ultrasonic velocities against a rigid substrate. Our results show that carbon peapods experience large deformation at impact, and undergo multiple fracture pathways, depending primarily on the relative orientation between the peapod and the substrate, and the impact velocity. Observed outcomes include fullerene ejection, carbon nanotube fracture, fullerene, and nanotube coalescence, as well as the formation of amorphous carbon structures.
172 - A. Misra , J.R. Greer , C. Daraio 2008
Super-compressible foam-like carbon nanotube films have been reported to exhibit highly nonlinear viscoelastic behaviour in compression similar to soft tissue. Their unique combination of light weight and exceptional electrical, thermal and mechanica l properties have helped identify them as viable building blocks for more complex nanosystems and as stand-alone structures for a variety of different applications. In the as-grown state, their mechanical performance is limited by the weak adhesion between the tubes, controlled by the van der Waals forces, and the substrate allowing the forests to split easily and to have low resistance in shear. Under axial compression loading carbon nanotubes have demonstrated bending, buckling8 and fracture9 (or a combination of the above) depending on the loading conditions and on the number of loading cycles. In this work, we partially anchor dense vertically aligned foam-like forests of carbon nanotubes on a thin, flexible polymer layer to provide structural stability, and report the mechanical response of such systems as a function of the strain rate. We test the sample under quasi-static indentation loading and under impact loading and report a variable nonlinear response and different elastic recovery with varying strain rates. A Bauschinger-like effect is observed at very low strain rates while buckling and the formation of permanent defects in the tube structure is reported at very high strain rates. Using high-resolution transmission microscopy
We describe a film of highly-aligned single-walled carbon nanotubes that acts as an excellent terahertz linear polarizer. There is virtually no attenuation (strong absorption) when the terahertz polarization is perpendicular (parallel) to the nanotub e axis. From the data we calculated the reduced linear dichrosim to be 3, corresponding to a nematic order parameter of 1, which demonstrates nearly perfect alignment as well as intrinsically anisotropic terahertz response of single-walled carbon nanotubes in the film.
We report on single-wall carbon nanotube (SWCNT) specific $^{13}$C isotope enrichment. The high temperature annealing of isotope enriched fullerenes encapsulated in SWCNTs yields double-wall carbon nanotubes (DWCNTs) with a high isotope enrichment of the inner wall. The vibrational spectra evidences that no carbon exchange occurs between the two walls. The method facilitates the identification of the Raman signal of the outer and inner tubes. Nuclear magnetic resonance proves the significant contrast of the isotope enriched SWCNTs as compared to other carbon phases, and provides information on the electronic properties of the small diameter inner tubes of the DWCNTs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا