ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi level alignment in molecular nanojunctions and its relation to charge transfer

48   0   0.0 ( 0 )
 نشر من قبل Robert Stadler
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The alignment of the Fermi level of a metal electrode within the gap of the hi ghest occupied (HOMO) and lowest unoccupied orbital (LUMO) of a molecule is a key quantity in molecular electronics, which can vary the electron transparency of a single molecule junction by orders of magnitude. We present a quantitative analysis of the relation between this level alignment (which can be estimated from charging free molecules) and charge transfer for bipyridine and biphenyl dithiolate (BPDT) molecules attached to gold leads based on density functional theory calculations. For both systems the charge distribution is defined by a balance between Pauli repulsion with subsequent electrostatic screening and the filling of the LUMO, where bipyridine loses electrons to the leads and BPDT gains electrons. As a direct consequence the Fermi level of the metal is found close to the LUMO for bipyridine and close to the HOMO for BPDT.

قيم البحث

اقرأ أيضاً

Materials with reduced dimensionality often exhibit exceptional properties that are different from their bulk counterparts. Here we report the emergence of a commensurate 2 $times$ 2 charge density wave (CDW) in monolayer and bilayer SnSe$_2$ films b y scanning tunneling microscope. The visualized spatial modulation of CDW phase becomes prominent near the Fermi level, which is pinned inside the semiconductor band gap of SnSe$_2$. We show that both CDW and Fermi level pinning are intimately correlated with band bending and virtual induced gap states at the semiconductor heterointerface. Through interface engineering, the electron-density-dependent phase diagram is established in SnSe$_2$. Fermi surface nesting between symmetry inequivalent electron pockets is revealed to drive the CDW formation and to provide an alternative CDW mechanism that might work in other compounds.
113 - Bongjae Kim 2021
The charge state of an ion provides a simplified electronic picture of the bonding in compounds, and heuristically explains the basic electronic structure of a system. Despite its usefulness, the physical and chemical definition of a charge state is not a trivial one, and the essential idea of electron transfer is found to be not a realistic explanation. Here, we study the real-space charge distribution of a cobalt ion in its various charge and spin states, and examine the relation between the formal charge/spin states and the static charge distribution. Taking the prototypical cobalt oxides, La/SrCoO$_3$, and bulk Co metal, we confirm that no prominent static charge transfer exists for different charge states. However, we show that small variations exist in the integrated charges for different charge states, and these are compared to the various spin state cases.
By employing x-ray photoelectron spectroscopy (XPS), we have been able to establish the occurrence of charge-transfer doping in few-layer graphene covered with electron acceptor (TCNE) and donor (TTF) molecules. We have performed quantitative estimat es of the extent of charge transfer in these complexes and elucidated the origin of unusual shifts of their Raman G bands and explained the differences in the dependence of conductivity on n- and p-doping. The study unravels the cause of the apparent difference between the charge-transfer doping and electrochemical doping.
The influence of He+ ion irradiation on the transport and magnetic properties of epitaxial layers of a diluted magnetic semiconductor (DMS) (In,Fe)Sb, a two-phase (In,Fe)Sb composite and a nominally undoped InSb semiconductor has been investigated. I n all layers, a conductivity type conversion from the initial n-type to the ptype has been found. The ion fluence at which the conversion occurs depends on the Fe concentration in the InSb matrix. Magnetotransport properties of the two-phase (In,Fe)Sb layer are strongly affected by ferromagnetic Fe inclusions. An influence of the number of electrically active radiation defects on the magnetic properties of the single-phase In0.75Fe0.25Sb DMS has been found. At the same time, the results show that the magnetic properties of the In0.75Fe0.25Sb DMS are quite resistant to significant changes of the charge carrier concentration and the Fermi level position. The results confirm a weak interrelation between the ferromagnetism and the charge carrier concentration in (In,Fe)Sb.
The spin-momentum locking at the Dirac surface state of a topological insulator (TI) offers a distinct possibility of a highly efficient charge-to-spin current (C-S) conversion compared with spin Hall effects in conventional paramagnetic metals. For the development of TI-based spin current devices, it is essential to evaluate its conversion efficiency quantitatively as a function of the Fermi level EF position. Here we exemplify a coefficient of qICS to characterize the interface C-S conversion effect by using spin torque ferromagnetic resonance (ST-FMR) for (Bi1-xSbx)2Te3 thin films whose EF is tuned across the band gap. In bulk insulating conditions, interface C-S conversion effect via Dirac surface state is evaluated as nearly constant large values of qICS, reflecting that the qICS is inversely proportional to the Fermi velocity vF that is almost constant. However, when EF traverses through the Dirac point, the qICS is remarkably suppressed possibly due to the degeneracy of surface spins or instability of helical spin structure. These results demonstrate that the fine tuning of the EF in TI based heterostructures is critical to maximizing the efficiency using the spin-momentum locking mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا