ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice Misfit Measurement in Inconel 625 by X-Ray Diffraction Technique

134   0   0.0 ( 0 )
 نشر من قبل Apu Sarkar
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Determination of lattice misfit and microstructural parameters of the coherent precipitates in Ni based alloy Inconel-625 is a challenging problem as their peaks are completely overlapping among themselves and also with the matrix. We have used a novel X-ray diffraction technique on the bulk samples of Inconel 625 at different heat-treated conditions to determine the lattice parameters, the lattice misfit of the coherent precipitates with the matrix and their microstructural parameters like size and strain.

قيم البحث

اقرأ أيضاً

121 - A.Sarkar , K. Dasgupta , P. Barat 2005
Two sets of amorphous carbon materials prepared at different routes are irradiated with swift (145 MeV) heavy ion (Ne6+). The structural parameters like the size of ordered grains along c and a axis i.e. Lc & La, the average spacing of the crystallog raphic planes (002) i.e. d002 and the fraction of the amorphous phase of the unirradiated and the irradiated samples are estimated by X-ray diffraction technique. The fraction of the amorphous phase is generally found to increase with the irradiation dose for both sets of the samples. The estimated and values are found to be almost unaffected by irradiation. The estimated values of corroborate with the increase of disorder in both sets of the samples with the increasing dose of irradiation. Keywords: X-ray Diffraction, Amorphous Carbon, Irradiation
Tungsten is the main candidate material for plasma-facing armour components in future fusion reactors. Bombardment with energetic fusion neutrons causes collision cascade damage and defect formation. Interaction of defects with helium, produced by tr ansmutation and injected from the plasma, modifies defect retention and behaviour. Here we investigate the residual lattice strains caused by different doses of helium-ion-implantation into tungsten and tungsten-rhenium alloys. Energy and depth-resolved synchrotron X-ray micro-diffraction uniquely permits the measurement of lattice strain with sub-micron 3D spatial resolution and ~10-4 strain sensitivity. Increase of helium dose from 300 appm to 3000 appm increases volumetric strain by only ~2.4 times, indicating that defect retention per injected helium atom is ~3 times higher at low helium doses. This suggests that defect retention is not a simple function of implanted helium dose, but strongly depends on material composition and presence of impurities. Conversely, analysis of W-1wt% Re alloy samples and of different crystal orientations shows that both the presence of rhenium, and crystal orientation, have comparatively small effect on defect retention. These insights are key for the design of armour components in future reactors where it will be essential to account for irradiation-induced dimensional change when predicting component lifetime and performance.
As a 3D topological insulator, bismuth selenide (Bi2Se3) has potential applications for electrically and optically controllable magnetic and optoelectronic devices. How the carriers interact with lattice is important to understand the coupling with i ts topological phase. It is essential to measure with a time scale smaller than picoseconds for initial interaction. Here we use an X-ray free-electron laser to perform time-resolved diffraction to study ultrafast carrier-induced lattice contractions and interlayer modulations in Bi2Se3 thin films. The lattice contraction depends on the carrier concentration and is followed by an interlayer expansion accompanied by oscillations. Using density functional theory (DFT) and the Lifshitz model, the initial contraction can be explained by van der Waals force modulation of the confined free carrier layers. Band inversion, related to a topological phase transition, is modulated by the expansion of the interlayer distance. These results provide insight into instantaneous topological phases on ultrafast timescales.
The mechanism of the evolution of the deformed microstructure at the earliest stage of annealing where the existence of the lowest length scale substructure paves the way to the formation of the so-called subgrains, has been studied for the first tim e. The study has been performed at high temperature on heavily deformed Ti-modified austenitic stainless steel using X-ray diffraction technique. Significant changes were observed in the values of the domain size, both with time and temperature. Two different types of mechanism have been proposed to be involved during the microstructural evolution at the earliest stages of annealing. The nature of the growth of domains with time at different temperatures has been modelled using these mechanisms. High-resolution transmission electron microscopy has been used to view the microstructure of the deformed and annealed sample and the results have been corroborated successfully with those found from the X-ray diffraction techniques.
110 - A.Sarkar , P.Mukherjee , P.Barat 2006
Different techniques of the X-ray Diffraction Line Profile Analysis (XRDLPA) have been used to assess the microstructure of the irradiated Zr-1.0%Nb-1.0%Sn-0.1%Fe alloy. The domain size, microstrain, density of dislocation and the stacking fault prob abilities of the irradiated alloy have been estimated as a function of dose by the Williamson-Hall Technique, Modified Rietveld Analysis and the Double Voigt Method. A clear signature in the increase in the density of dislocation with the dose of irradiated was revealed. The analysis also estimated the average density of dislocation in the major slip planes after irradiation. For the first time, we have established the changes in the electron density distribution due to irradiation by X-ray diffraction technique. We could estimate the average displacement of the atoms and the lattice strain caused due to irradiation from the changes in the electron density distribution as observed in the contour plots.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا