ﻻ يوجد ملخص باللغة العربية
Tungsten is the main candidate material for plasma-facing armour components in future fusion reactors. Bombardment with energetic fusion neutrons causes collision cascade damage and defect formation. Interaction of defects with helium, produced by transmutation and injected from the plasma, modifies defect retention and behaviour. Here we investigate the residual lattice strains caused by different doses of helium-ion-implantation into tungsten and tungsten-rhenium alloys. Energy and depth-resolved synchrotron X-ray micro-diffraction uniquely permits the measurement of lattice strain with sub-micron 3D spatial resolution and ~10-4 strain sensitivity. Increase of helium dose from 300 appm to 3000 appm increases volumetric strain by only ~2.4 times, indicating that defect retention per injected helium atom is ~3 times higher at low helium doses. This suggests that defect retention is not a simple function of implanted helium dose, but strongly depends on material composition and presence of impurities. Conversely, analysis of W-1wt% Re alloy samples and of different crystal orientations shows that both the presence of rhenium, and crystal orientation, have comparatively small effect on defect retention. These insights are key for the design of armour components in future reactors where it will be essential to account for irradiation-induced dimensional change when predicting component lifetime and performance.
Focussed Ion Beam (FIB) milling is a mainstay of nano-scale machining. By manipulating a tightly focussed beam of energetic ions, often gallium (Ga+), FIB can sculpt nanostructures via localised sputtering. This ability to cut solid matter on the nan
Using X-ray micro-diffraction and surface acoustic wave spectroscopy, we measure lattice swelling and elastic modulus changes in a W-1%Re alloy after implantation with 3110 appm of helium. A fraction of a percent observed lattice expansion gives rise
X-ray photoelectron spectroscopy (XPS) and resonant x-ray emission spectroscopy (RXES) measurements of pellet and thin film forms of TiO$_2$ with implanted Fe ions are presented and discussed. The findings indicate that Fe-implantation in a TiO$_2$ p
Developing a comprehensive understanding of the modification of material properties by neutron irradiation is important for the design of future fission and fusion power reactors. Self-ion implantation is commonly used to mimic neutron irradiation da
This study presents a detailed examination of the lattice distortions introduced by glancing incidence Focussed Ion Beam (FIB) milling. Using non-destructive multi-reflection Bragg coherent X-ray diffraction we probe damage formation in an initially