ﻻ يوجد ملخص باللغة العربية
Recently discovered new structures and zero-resistance states outside the well-known oscillations are demonstrated to arise from multiphoton assisted processes, by a detailed analysis of microwave photoresistance in two-dimensional electron systems under enhanced radiation. The concomitant resistance dropping and peak narrowing observed in the experiments are also reproduced. We show that the radiation-induced suppression of average resistance comes from virtual photon effect and exists throughout the whole magnetic field range.
Effects of microwave radiation on magnetoresistance are analyzed in a balance-equation scheme that covers regimes of inter- and intra-Landau level processes and takes account of photon-asissted electron transitions as well as radiation-induced change
We report the observation of inverse-magnetic-field-periodic, radiation-induced magnetoresistance oscillations in GaAs/AlGaAs heterostructures prepared in W. Wegscheiders group, compare their characteristics with similar oscillations in V. Umanskys m
We present a theory of the phonon-assisted nonlinear dc transport of 2D electrons in high Landau levels. The nonlinear dissipative resistivity displays quantum magneto-oscillations governed by two parameters which are proportional to the Hall drift v
We report an universal behaviour of hopping transport in strongly interacting mesoscopic two-dimensional electron systems (2DES). In a certain window of background disorder, the resistivity at low perpendicular magnetic fields follows the expected re
We investigate the phases of two-dimensional electron-hole systems strongly coupled to a microcavity photon field in the limit of extreme charge imbalance. Using variational wave functions, we examine the competition between different electron-hole p