ﻻ يوجد ملخص باللغة العربية
We have studied the dephasing of a superconducting flux-qubit coupled to a DC-SQUID based oscillator. By varying the bias conditions of both circuits we were able to tune their effective coupling strength. This allowed us to measure the effect of such a controllable and well-characterized environment on the qubit coherence. We can quantitatively account for our data with a simple model in which thermal fluctuations of the photon number in the oscillator are the limiting factor. In particular, we observe a strong reduction of the dephasing rate whenever the coupling is tuned to zero. At the optimal point we find a large spin-echo decay time of $4 mu s$.
We theoretically study measurement induced-dephasing of a superconducting qubit in the circuit QED architecture and compare the results to those obtained experimentally by Schuster {it et al.}, [Phys. Rev. Lett. 94, 123602 (2005)]. Strong coupling of
The proximity effect (PE) between superconductor and confined electrons can induce the effective pairing phenomena of electrons in nanowire or quantum dot (QD). Through interpreting the PE as an exchange of virtually quasi-excitation in a largely gap
We evaluate the rates of energy and phase relaxation of a superconducting qubit caused by stray photons with energy exceeding the threshold for breaking a Cooper pair. All channels of relaxation within this mechanism are associated with the change in
We suggest and demonstrate a protocol which suppresses dephasing due to the low-frequency noise by qubit motion, i.e., transfer of the logical qubit of information in a system of $n geq 2$ physical qubits. The protocol requires only the nearest-neigh
The loss and noise mechanisms of superconducting resonators are useful tools for understanding decoherence in superconducting circuits. While the loss mechanisms have been heavily studied, noise in superconducting resonators has only recently been in