ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-current vortices in current-perpendicular-to-plane nanoconstricted spin-valves

162   0   0.0 ( 0 )
 نشر من قبل Mairbek Chshiev
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The charge and spin diffusion equations taking into account spin-flip and spin-transfer torque were numerically solved using a finite element method in complex non-collinear geometry with strongly inhomogeneous current flow. As an illustration, spin-dependent transport through a non-magnetic nanoconstriction separating two magnetic layers was investigated. Unexpected results such as vortices of spin-currents in the vicinity of the nanoconstriction were obtained. The angular variations of magnetoresistance and spin-transfer torque are strongly influenced by the structure geometry.



قيم البحث

اقرأ أيضاً

The spin injection and accumulation in metallic lateral spin valves with transparent interfaces is studied using d.c. injection current. Unlike a.c.-based techniques, this allows investigating the effects of the direction and magnitude of the injecte d current. We find that the spin accumulation is reversed by changing the direction of the injected current, whereas its magnitude does not change. The injection mechanism for both current directions is thus perfectly symmetric, leading to the same spin injection efficiency for both spin types. This result is accounted for by a spin-dependent diffusion model. Joule heating increases considerably the local temperature in the spin valves when high current densities are injected ($sim$80--105 K for 1--2$times10^{7}$A cm$^{-2}$), strongly affecting the spin accumulation.
Spin-transfer torque and current induced spin dynamics in spin-valve nanopillars with the free magnetic layer located between two magnetic films of fixed magnetic moments is considered theoretically. The spin-transfer torque in the limit of diffusive spin transport is calculated as a function of magnetic configuration. It is shown that non-collinear magnetic configuration of the outermost magnetic layers has a strong influence on the spin torque and spin dynamics of the central free layer. Employing macrospin simulations we make some predictions on the free layer spin dynamics in spin valves composed of various magnetic layers. We also present a formula for critical current in non-collinear magnetic configurations, which shows that the magnitude of critical current can be several times smaller than that in typical single spin valves.
We theoretically study the optical generation of dc spin current (i.e., a spin-current solar cell) in ordered antiferromagnetic and ferrimagnetic insulators, motivated by a recent study on the laser-driven spinon spin current in noncentrosymmetric qu antum spin chains [H. Ishizuka and M. Sato, Phys. Rev. Lett. 122, 197702 (2019)]. Using a non-linear response theory for magnons, we analyze the dc spin current generated by a linearly-polarized electromagnetic wave (typically, terahertz or gigahertz waves). Considering noncentrosymmetric two-sublattice magnets as an example, we find a finite dc spin current conductivity at $T=0$, where no thermally-excited magnons exist; this is in contrast to the case of the spinon spin current, in which the optical transition of the Fermi degenerate spinons plays an essential role. We find that the dc spin-current conductivity is insensitive to the Gilbert damping, i.e., it may be viewed as a shift current carried by bosonic particles (magnons). Our estimate shows that an electric-field intensity of $Esim10^4-10^6$ V/cm is sufficient for an observable spin current. Our theory indicates that the linearly-polarized electromagnetic wave generally produces a dc spin current in noncentrosymmetric magnetic insulators.
By means of spin current, the flow of spin angular momentum, we find a regime of spin treacle in a frustrated magnetic system. To establish its existence, we have performed spin transport measurements in nanometer-scale spin glasses. At temperatures high enough that the magnetic moments fluctuate at high frequencies, the spin Hall angle, the conversion yield between spin current and charge current, is independent of temperature. The spin Hall angle starts to decrease at a certain temperature $T^{*}$ and completely vanishes at a lower temperature. We argue that the latter corresponds to the spin freezing temperature $T_{rm f}$ of the nanometer-scale spin glass, where the direction of conduction electron spin is randomized by the exchange coupling with the localized moments. The present experiment textit{quantitatively} verifies the existence of a distinct spin treacle between $T_{rm f}$ and $T^{*}$. We have also quantified a time scale of fluctuation of local magnetic moments in the spin treacle from the spin relaxation time of conduction electrons.
A new measurement technique for the spin Seebeck effect is presented, wherein the normal metal layer used for its detection is exploited simultaneously as a resistive heater and thermometer. We show how the various contributions to the measured total signal can be disentangled, allowing to extract the voltage signal solely caused by the spin Seebeck effect. To this end we performed measurements as a function of the external magnetic field strength and its orientation. We find that the effect scales linearly with the induced rise in temperature, as expected for the spin Seebeck effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا