ترغب بنشر مسار تعليمي؟ اضغط هنا

Phoretic colloids close to and trapped at fluid interfaces

259   0   0.0 ( 0 )
 نشر من قبل Paolo Malgaretti Mr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The active motion of phoretic colloids leads them to accumulate at boundaries and interfaces. Such an excess accumulation, with respect to their passive counterparts, makes the dynamics of phoretic colloids particularly sensitive to the presence of boundaries and pave new routes to externally control their single particle as well as collective behavior. Here we review some recent theoretical results about the dynamics of phoretic colloids close to and adsorbed at fluid interfaces in particular highlighting similarities and differences with respect to solid-fluid interfaces.

قيم البحث

اقرأ أيضاً

The dynamics of active colloids is very sensitive to the presence of boundaries and interfaces which therefore can be used to control their motion. Here we analyze the dynamics of active colloids adsorbed at a fluid-fluid interface. By using a mesosc opic numerical approach which relies on an approximated numerical solution of the Navier-Stokes equation, we show that when adsorbed at a fluid interface, an active colloid experiences a net torque even in the absence of a viscosity contrast between the two adjacent fluids. In particular, we study the dependence of this torque on the contact angle of the colloid with the fluid-fluid interface and on its surface properties. We rationalize our results via an approximate approach which accounts for the appearance of a local friction coefficient. By providing insight into the dynamics of active colloids adsorbed at fluid interfaces, our results are relevant for two-dimensional self assembly and emulsion stabilization by means of active colloids.
We explore the interfacial instability that results when a Newtonian fluid (a glycerol-water mixture, inner fluid) displaces a viscoelastic fluid (a dense cornstarch suspension, outer fluid) in a radial Hele-Shaw cell. As the ratio of viscosities of the inner and outer fluids is increased, side branched interfacial patterns are replaced by more stable interfaces that display proportionate growth and finger coalescence. We correlate the average finger spacing with the most dominant wavelength of interfacial instability, computed using a mathematical model that accounts for viscous fingering in miscible Hele-Shaw displacements. The model predictions on the role of viscosity ratio on finger spacing are in close agreement with the experimental observations. Our study lends insight into the significant contribution of the viscoelasticity of the outer fluid on the morphology and growth of interfacial patterns.
Artificial phoretic particles swim using self-generated gradients in chemical species (self-diffusiophoresis) or charges and currents (self-electrophoresis). These particles can be used to study the physics of collective motion in active matter and m ight have promising applications in bioengineering. In the case of self-diffusiophoresis, the classical physical model relies on a steady solution of the diffusion equation, from which chemical gradients, phoretic flows and ultimately the swimming velocity, may be derived. Motivated by disk-shaped particles in thin films and under confinement, we examine the extension to two dimensions. Because the two-dimensional diffusion equation lacks a steady state with the correct boundary conditions, Laplace transforms must be used to study the long-time behavior of the problem and determine the swimming velocity. For fixed chemical fluxes on the particle surface, we find that the swimming velocity ultimately always decays logarithmically in time. In the case of finite Peclet numbers, we solve the full advection-diffusion equation numerically and show that this decay can be avoided by the particle moving to regions of unconsumed reactant. Finite advection thus regularizes the two-dimensional phoretic problem.
We report experiments that show rapid crystallization of colloids tethered to an oil-water interface in response to laser illumination. This light-induced transition is due to a combination of long-ranged thermophoretic pumping and local optical bind ing. We show that the flow-induced force on the colloids can be described as the gradient of a potential. The nonequilibrium steady state due to local heating thus admits an effective equilibrium description. The optofluidic manipulation explored in this work opens novel ways to manipulate and assemble colloidal particles
118 - Ivan C. Christov 2021
Microfluidic devices manufactured from soft polymeric materials have emerged as a paradigm for cheap, disposable and easy-to-prototype fluidic platforms for integrating chemical and biological assays and analyses. The interplay between the flow force s and the inherently compliant conduits of such microfluidic devices requires careful consideration. While mechanical compliance was initially a side-effect of the manufacturing process and materials used, compliance has now become a paradigm, enabling new approaches to microrheological measurements, new modalities of micromixing, and improved sieving of micro- and nano-particles, to name a few applications. This topical review provides an introduction to the physics of these systems. Specifically, the goal of this review is to summarize the recent progress towards a mechanistic understanding of the interaction between non-Newtonian (complex) fluid flows and their deformable confining boundaries. In this context, key experimental results and relevant applications are also explored, hand-in-hand with the fundamental principles for their physics-based modeling. The key topics covered include shear-dependent viscosity of non-Newtonian fluids, hydrodynamic pressure gradients during flow, the elastic response (bulging and deformation) of soft conduits due to flow within, the effect of cross-sectional conduit geometry on the resulting fluid-structure interaction, and key dimensionless groups describing the coupled physics. Open problems and future directions in this nascent field of soft hydraulics, at the intersection of non-Newtonian fluid mechanics, soft matter physics, and microfluidics, are noted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا