ﻻ يوجد ملخص باللغة العربية
We have studied the transport properties of a molecular device composed of donor and acceptor moieties between two electrodes on either side. The device is considered to be one-dimensional with different on-site energies and the non-equilibrium properties are calculated using Landauers formalism. The current-voltage characteristics is found to be asymmetric with a sharp Negative Differential Resistance at a critical bias on one side and very small current on the other side. The NDR arises primarily due to the bias driven electronic structure change from one kind of insulating phase to another through a highly delocalized conducting phase. Our model can be considered to be the simplest to explain the experimental current-voltage characteristics observed in many molecular devices.
We demonstrate that rectification ratios (RR) of >250 (>1000) at biases of 0.5 V (1.2 V) are achievable at the two-molecule limit for donor-acceptor bilayers of pentacene on fullerene on Cu using scanning tunneling spectroscopy and microscopy. Using
The quantum transport via a donor (D)-bridge (B)-acceptor (A) single molecule is studied using density functional theory in conjunction with the Landauer-B{u}ttiker formalism. Asymmetric electrical response for opposite biases is observed resulting i
It is shown that the excitation of charge carriers by ac electric field with zero average driving leads to a direct electric current in quantum well structures. The current emerges for both linear and circular polarization of the ac electric field an
Transitions to immeasurably small electrical resistance in thin films of Ag/Au nanostructure-based films have generated significant interest because such transitions can occur even at ambient temperature and pressure. While the zero-bias resistance a
Experimental results of rectification of a constant wave radio frequency (RF) current flowing in a single-layered ferromagnetic wire are presented. We show that a detailed external magnetic field dependence of the RF current induced a direct-current