ﻻ يوجد ملخص باللغة العربية
Experimental results of rectification of a constant wave radio frequency (RF) current flowing in a single-layered ferromagnetic wire are presented. We show that a detailed external magnetic field dependence of the RF current induced a direct-current voltage spectrum. The mechanism of the rectification is discussed in a term of the spin transfer torque, and the rectification is closely related to resonant spin wave excitation with the assistant of the spin-polarized RF current. The micromagnetic simulation taking into account the spin transfer torque provides strong evidence which supports the generation of spin wave excitation by the RF current.
An anomalous Hall effect and rectification of a Hall voltage are observed by applying a radio-frequency (rf) current through a single-layered ferromagnetic wire located on a coplanar waveguide. The components of the magnetization precession, both in
We propose an electrically driven spin injector into normal metals and semiconductors, which is based on a magnetic tunnel junction (MTJ) subjected to a microwave voltage. Efficient functioning of such an injector is provided by electrically induced
It is shown that the excitation of charge carriers by ac electric field with zero average driving leads to a direct electric current in quantum well structures. The current emerges for both linear and circular polarization of the ac electric field an
A ferromagnet can resonantly absorbs rf radiation to sustain a steady precession of the magnetization around an internal or applied magnetic field. We show that under these ferromagnetic resonance (FMR) conditions, a dc voltage is generated at a norm
We demonstrate excitation of ferromagnetic resonance in CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs) by the combined action of voltage-controlled magnetic anisotropy (VCMA) and spin transfer torque (ST). Our measurements reveal that GHz-frequency