ترغب بنشر مسار تعليمي؟ اضغط هنا

Constant effective mass across the phase diagram of high-T$_{c}$ cuprates

150   0   0.0 ( 0 )
 نشر من قبل Willie J. Padilla
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the hole dynamics in two prototypical high temperature superconducting systems: La$_{2-x}$Sr$_{x}$CuO$_{4}$ and YBa$_{2}$Cu$_{3}% $O$_{y}$ using a combination of DC transport and infrared spectroscopy. By exploring the effective spectral weight obtained with optics in conjunction with DC Hall results we find that the transition to the Mott insulating state in these systems is of the vanishing carrier number type since we observe no substantial enhancement of the mass as one proceeds to undoped phases. Further, the effective mass remains constant across the entire underdoped regime of the phase diagram. We discuss the implications of these results for the understanding of both transport phenomena and pairing mechanism in high-T$_{c}$ systems.



قيم البحث

اقرأ أيضاً

156 - M. Civelli 2009
We study the dynamics of the Cooper pairing across the T=0 phase diagram of the two-dimensional Hubbard Model, relevant for high-temperature superconductors, using a cluster extension of dynamical mean field theory. We find that the superconducting p airing function evolves from an unconventional form in the over-doped region into a more conventional boson-mediated retarded form in the under-doped region of the phase diagram. The boson, however, promotes the rise of a pseudo-gap in the electron density of states rather than a superconducting gap as in the standard theory of superconductivity. We discuss our results in terms of Mott-related phenomena, and we show that they can be observed in tunneling experiments.
134 - S. Barisic , O. S. Barisic 2008
Atomic repulsion $U_d$ on the Cu site in high T$_c$ cuprates is large but, surprisingly, some important properties are consistent with moderate couplings. The time dependent perturbation theory with slave particles is therefore formulated in the $U_d toinfty$ limit for the metallic phase in the physically relevant regime of the three-band Emery model. The basic theory possesses the local gauge invariance asymptotically but its convergence is fast when the average occupation of the Cu-site is small. The leading orders exhibit the band narrowing and the dynamic Cu/O$_2$ charge transfer disorder. The effective local repulsion between particles on oxygen sites is shown to be moderate in the physical regime under consideration. It enhances the coherent incommensurate SDW correlations. The latter compete with the Cu/O$_2$ charge transfer disorder, in agreement with basic observations in high T$_c$ cuprates.
NdFeAsO0.88F0.12 belongs to the recently discovered family of high-TC iron-based superconductors. The influence of high pressure on transport properties of this material has been studied. Contrary to La-based compounds, we did not observe a maximum i n TC under pressure. Under compression, TC drops rapidly as a linear function of pressure with the slope k = -2.8 pm 0.1 K / GPa. The extrapolated value of TC at zero pressure is about TC (0) = 51.7 pm 0.4 K. At pressures higher than ~18.4 GPa, the superconducting state disappears at all measured temperatures. The resistance changes slope and shows a turn-up behavior, which may be related to the Kondo effect or a weak localization of two-dimensional carriers below ~45 K that is above TC and thus competing with the superconducting phase. The behavior of the sample is completely reversible at the decompression. On the bases of our experimental data, we propose a tentative P-T phase diagram of NdFeAsO0.88F0.12.
367 - J. Ayres , M. Berben , M. Culo 2020
Strange metals possess highly unconventional transport characteristics, such as a linear-in-temperature ($T$) resistivity, an inverse Hall angle that varies as $T^2$ and a linear-in-field ($H$) magnetoresistance. Identifying the origin of these colle ctive anomalies has proved profoundly challenging, even in materials such as the hole-doped cuprates that possess a simple band structure. The prevailing dogma is that strange metallicity in the cuprates is tied to a quantum critical point at a doping $p*$ inside the superconducting dome. Here, we study the high-field in-plane magnetoresistance of two superconducting cuprate families at doping levels beyond $p*$. At all dopings, the magnetoresistance exhibits quadrature scaling and becomes linear at high $H/T$ ratios. Moreover, its magnitude is found to be much larger than predicted by conventional theory and insensitive to both impurity scattering and magnetic field orientation. These observations, coupled with analysis of the zero-field and Hall resistivities, suggest that despite having a single band, the cuprate strange metal phase hosts two charge sectors, one containing coherent quasiparticles, the other scale-invariant `Planckian dissipators.
115 - Z.Y. Weng , D.N. Sheng , 2000
We present a self-consistent RVB theory which unifies the metallic (superconducting) phase with the half-filling antiferromagnetic (AF) phase. Two crucial factors in this theory include the RVB condensation which controls short-range AF spin correlat ions and the phase string effect introduced by hole hopping as a key doping effect. We discuss both the uniform and non-uniform mean-field solutions and show the unique features of the characteristic spin energy scale, superconducting transition temperature, and the phase diagram, which are all consistent with the experimental measurements of high-$T_c$ cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا