ترغب بنشر مسار تعليمي؟ اضغط هنا

Incoherent transport across the strange metal regime of highly overdoped cuprates

368   0   0.0 ( 0 )
 نشر من قبل Nigel Hussey
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Strange metals possess highly unconventional transport characteristics, such as a linear-in-temperature ($T$) resistivity, an inverse Hall angle that varies as $T^2$ and a linear-in-field ($H$) magnetoresistance. Identifying the origin of these collective anomalies has proved profoundly challenging, even in materials such as the hole-doped cuprates that possess a simple band structure. The prevailing dogma is that strange metallicity in the cuprates is tied to a quantum critical point at a doping $p*$ inside the superconducting dome. Here, we study the high-field in-plane magnetoresistance of two superconducting cuprate families at doping levels beyond $p*$. At all dopings, the magnetoresistance exhibits quadrature scaling and becomes linear at high $H/T$ ratios. Moreover, its magnitude is found to be much larger than predicted by conventional theory and insensitive to both impurity scattering and magnetic field orientation. These observations, coupled with analysis of the zero-field and Hall resistivities, suggest that despite having a single band, the cuprate strange metal phase hosts two charge sectors, one containing coherent quasiparticles, the other scale-invariant `Planckian dissipators.



قيم البحث

اقرأ أيضاً

We report magnetoresistance and Hall Effect results for electron-doped films of the high-temperature superconductor La$_{2-x}$Ce$_x$CuO$_4$ (LCCO) for temperatures from 0.7 to 45 K and magnetic fields up to 65 T. For x = 0.12 and 0.13, just below the Fermi surface reconstruction (FSR), the normal state in-plane resistivity exhibits a well-known upturn at low temperature. Our new results show that this resistivity upturn is eliminated at high magnetic field and the resistivity becomes linear-in-temperature from $sim$ 40 K down to 0.7 K. The magnitude of the linear coefficient scales with Tc and doping, as found previously [1,2] for dopings above the FSR. In addition, the normal state Hall coefficient has an unconventional field dependence for temperatures below 50K. This anomalous transport data presents a new challenge to theory and suggests that the strange metal normal state is also present in the antiferromagnetic regime.
Single-particle spectroscopic probes, such as scanning tunneling and angle-resolved photoemission spectroscopy (ARPES), have provided us with crucial insights into the complex electronic structure of the high-Tc cuprates, in particular for the under and optimally doped regimes where high-quality crystals suitable for surface-sensitive experiments are available. Conversely, the elementary excitations on the heavily overdoped side of the phase diagram remain largely unexplored. Important breakthroughs could come from the study of Tl2Ba2CuO6+d (Tl2201), a structurally simple system whose doping level can be tuned from optimal to extreme overdoping by varying the oxygen content. We have grown single crystals of Tl2201, which were then carefully annealed under controlled oxygen partial pressures. Their high quality and homogeneity are demonstrated by narrow rocking curves and superconducting transition widths. These crystals have enabled the first successful ARPES study of both normal and superconducting-state electronic structure in Tl2201, allowing a direct comparison with the Fermi surface from magnetoresistance and the gap from thermal conductivity experiments. This establishes Tl2201 as the first high-Tc cuprate for which a surface-sensitive single-particle spectroscopy and a comparable bulk transport technique have arrived at quantitative agreement on a major feature such as the normal state Fermi surface. The surprising momentum dependence of the ARPES lineshape is also discussed.
Several experimental and theoretical studies indicate the existence of a critical point separating the underdoped and overdoped regions of the high-T_c cuprates phase diagram. There are at least two distinct proposals on the critical concentration an d its physical origin. First one is associated with the pseudogap formation for p<p*, with p~0.2. Another one relies on the Hall effect measurements and suggests that the critical point and the quantum phase transition (QPT) take place at optimal doping, p_{opt}~0.16. Here we have performed a precise density of states calculation and found that there are two QPTs and the corresponding critical concentrations associated with the change of the Fermi surface topology upon doping.
We investigate the hole dynamics in two prototypical high temperature superconducting systems: La$_{2-x}$Sr$_{x}$CuO$_{4}$ and YBa$_{2}$Cu$_{3}% $O$_{y}$ using a combination of DC transport and infrared spectroscopy. By exploring the effective spectr al weight obtained with optics in conjunction with DC Hall results we find that the transition to the Mott insulating state in these systems is of the vanishing carrier number type since we observe no substantial enhancement of the mass as one proceeds to undoped phases. Further, the effective mass remains constant across the entire underdoped regime of the phase diagram. We discuss the implications of these results for the understanding of both transport phenomena and pairing mechanism in high-T$_{c}$ systems.
The magnetic-field, temperature, and angular dependence of the interlayer magnetoresistance of two different quasi-two-dimensional (2D) organic superconductors is reported. For $kappa$-(BEDT-TTF)$_2$I$_3$ we find a well-resolved peak in the angle-dep endent magnetoresistance at $Theta = 90^circ$ (field parallel to the layers). This clear-cut proof for the coherent nature of the interlayer transport is absent for $beta$-(BEDT-TTF)$_2$SF$_5$CH$_2$CF$_2$SO$_3$. This and the non-metallic behavior of the magnetoresistance suggest an incoherent quasiparticle motion for the latter 2D metal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا