ﻻ يوجد ملخص باللغة العربية
Dielectric loss from two-level states is shown to be a dominant decoherence source in superconducting quantum bits. Depending on the qubit design, dielectric loss from insulating materials or the tunnel junction can lead to short coherence times. We show that a variety of microwave and qubit measurements are well modeled by loss from resonant absorption of two-level defects. Our results demonstrate that this loss can be significantly reduced by using better dielectrics and fabricating junctions of small area $lesssim 10 mu textrm{m}^2$. With a redesigned phase qubit employing low-loss dielectrics, the energy relaxation rate has been improved by a factor of 20, opening up the possibility of multi-qubit gates and algorithms.
Although Josephson junction qubits show great promise for quantum computing, the origin of dominant decoherence mechanisms remains unknown. We report Rabi oscillations for an improved phase qubit, and show that their coherence amplitude is significan
We have measured the excited state lifetimes in Josephson junction phase and transmon qubits, all of which were fabricated with the same scalable multi-layer process. We have compared the lifetimes of phase qubits before and after removal of the isol
The realisation of quantum computers based on molecular electronic spins requires the design of qubits with very long coherence times, T2. Dephasing can proceed over several different microscopic pathways, active at the same time and in different reg
The recent quest for improved functional materials like high permittivity dielectrics and/or multiferroics has triggered an intense wave of research. Many materials have been checked for their dielectric permittivity or their polarization state. In t
We investigate the decoherence patterns of topological qubits in contact with the environment by a novel way of deriving the open system dynamics other than the Feynman-Vernon. Each topological qubit is made of two Majorana modes of a 1D Kitaevs chai