ترغب بنشر مسار تعليمي؟ اضغط هنا

Decoherence in Josephson Qubits from Dielectric Loss

374   0   0.0 ( 0 )
 نشر من قبل Matthias Steffen
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dielectric loss from two-level states is shown to be a dominant decoherence source in superconducting quantum bits. Depending on the qubit design, dielectric loss from insulating materials or the tunnel junction can lead to short coherence times. We show that a variety of microwave and qubit measurements are well modeled by loss from resonant absorption of two-level defects. Our results demonstrate that this loss can be significantly reduced by using better dielectrics and fabricating junctions of small area $lesssim 10 mu textrm{m}^2$. With a redesigned phase qubit employing low-loss dielectrics, the energy relaxation rate has been improved by a factor of 20, opening up the possibility of multi-qubit gates and algorithms.

قيم البحث

اقرأ أيضاً

Although Josephson junction qubits show great promise for quantum computing, the origin of dominant decoherence mechanisms remains unknown. We report Rabi oscillations for an improved phase qubit, and show that their coherence amplitude is significan tly degraded by spurious microwave resonators. These resonators arise from changes in the junction critical current produced by two-level states in the tunnel barrier. The discovery of these high frequency resonators impacts the future of all Josephson qubits as well as existing Josephson technologies. We predict that removing or reducing these resonators through materials research will improve the coherence of all Josephson qubits.
We have measured the excited state lifetimes in Josephson junction phase and transmon qubits, all of which were fabricated with the same scalable multi-layer process. We have compared the lifetimes of phase qubits before and after removal of the isol ating dielectric, SiNx, and find a four-fold improvement of the relaxation time after the removal. Together with the results from the transmon qubit and measurements on coplanar waveguide resonators, these measurements indicate that the lifetimes are limited by losses from the dielectric constituents of the qubits. We have extracted the individual loss contributions from the dielectrics in the tunnel junction barrier, AlOx, the isolating dielectric, SiNx, and the substrate, Si/SiO2, by weighing the total loss with the parts of electric field over the different dielectric materials. Our results agree well and complement the findings from other studies, demonstrating that superconducting qubits can be used as a reliable tool for high-frequency characterization of dielectric materials. We conclude with a discussion of how changes in design and material choice could improve qubit lifetimes up to a factor of four.
The realisation of quantum computers based on molecular electronic spins requires the design of qubits with very long coherence times, T2. Dephasing can proceed over several different microscopic pathways, active at the same time and in different reg imes. This makes the rationalisation of the dephasing process not straightforward. Here we present a computational methodology able to address spin decoherence processes for a general ensemble of spins. The method consists in the propagation of the unitary quantum spin dynamics on a reduced Hilbert space. Then we study the dependence of spin dephasing over the magnetic dilution for a crystal of Vanadyl-based molecular qubits. Our results show the importance of long-range electronic spin-spin interactions and their effect on the shape of the spin-echo signal.
The recent quest for improved functional materials like high permittivity dielectrics and/or multiferroics has triggered an intense wave of research. Many materials have been checked for their dielectric permittivity or their polarization state. In t his report, we call for caution when samples are simultaneously displaying insulating behavior and defect-related conductivity. Many oxides containing mixed valent cations or oxygen vacancies fall in this category. In such cases, most of standard experiments may result in effective high dielectric permittivity which cannot be related to ferroelectric polarization. Here we list few examples of possible discrepancies between measured parameters and their expected microscopic origin.
We investigate the decoherence patterns of topological qubits in contact with the environment by a novel way of deriving the open system dynamics other than the Feynman-Vernon. Each topological qubit is made of two Majorana modes of a 1D Kitaevs chai n. These two Majorana modes interact with the environment in an incoherent way which yields peculiar decoherence patterns of the topological qubit. More specifically, we consider the open system dynamics of the topological qubits which are weakly coupled to the fermionic/bosonic Ohmic-like environments. We find atypical patterns of quantum decoherence. In contrast to the cases of non-topological qubits for which they always decohere completely in all Ohmic-like environments, the topological qubits decohere completely in the Ohmic and sub-Ohmic environments but not in the super-Ohmic ones. Moreover, we find that the fermion parities of the topological qubits though cannot prevent the qubit states from decoherence in the sub-Ohmic environments, can prevent from thermalization turning into Gibbs state. We also study the cases in which each Majorana mode can couple to different Ohmic-like environments and the time dependence of concurrence for two topological qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا