ترغب بنشر مسار تعليمي؟ اضغط هنا

Dielectric losses in multi-layer Josephson junction qubits

121   0   0.0 ( 0 )
 نشر من قبل David Gunnarsson
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured the excited state lifetimes in Josephson junction phase and transmon qubits, all of which were fabricated with the same scalable multi-layer process. We have compared the lifetimes of phase qubits before and after removal of the isolating dielectric, SiNx, and find a four-fold improvement of the relaxation time after the removal. Together with the results from the transmon qubit and measurements on coplanar waveguide resonators, these measurements indicate that the lifetimes are limited by losses from the dielectric constituents of the qubits. We have extracted the individual loss contributions from the dielectrics in the tunnel junction barrier, AlOx, the isolating dielectric, SiNx, and the substrate, Si/SiO2, by weighing the total loss with the parts of electric field over the different dielectric materials. Our results agree well and complement the findings from other studies, demonstrating that superconducting qubits can be used as a reliable tool for high-frequency characterization of dielectric materials. We conclude with a discussion of how changes in design and material choice could improve qubit lifetimes up to a factor of four.

قيم البحث

اقرأ أيضاً

Although Josephson junction qubits show great promise for quantum computing, the origin of dominant decoherence mechanisms remains unknown. We report Rabi oscillations for an improved phase qubit, and show that their coherence amplitude is significan tly degraded by spurious microwave resonators. These resonators arise from changes in the junction critical current produced by two-level states in the tunnel barrier. The discovery of these high frequency resonators impacts the future of all Josephson qubits as well as existing Josephson technologies. We predict that removing or reducing these resonators through materials research will improve the coherence of all Josephson qubits.
We present general symmetry arguments that show the appearance of doubly denerate states protected from external perturbations in a wide class of Hamiltonians. We construct the simplest spin Hamiltonian belonging to this class and study its propertie s both analytically and numerically. We find that this model generally has a number of low energy modes which might destroy the protection in the thermodynamic limit. These modes are qualitatively different from the usual gapless excitations as their number scales as the linear size (instead of volume) of the system. We show that the Hamiltonians with this symmetry can be physically implemented in Josephson junction arrays and that in these arrays one can eliminate the low energy modes with a proper boundary condition. We argue that these arrays provide fault tolerant quantum bits. Further we show that the simplest spin model with this symmetry can be mapped to a very special Z_2 Chern-Simons model on the square lattice. We argue that appearance of the low energy modes and the protected degeneracy is a natural property of lattice Chern-Simons theories. Finally, we discuss a general formalism for the construction of discrete Chern-Simons theories on a lattice.
An improved tunable coupling element for building networks of coupled rf-SQUID flux qubits has been experimentally demonstrated. This new form of coupler, based upon the compound Josephson junction rf-SQUID, provides a sign and magnitude tunable mutu al inductance between qubits with minimal nonlinear crosstalk from the coupler tuning parameter into the qubits. Quantitative agreement is shown between an effective one-dimensional model of the couplers potential and measurements of the coupler persistent current and susceptibility.
We introduce a simplified fabrication technique for Josephson junctions and demonstrate superconducting Xmon qubits with $T_1$ relaxation times averaging above 50$~mu$s ($Q>$1.5$times$ 10$^6$). Current shadow-evaporation techniques for aluminum-based Josephson junctions require a separate lithography step to deposit a patch that makes a galvanic, superconducting connection between the junction electrodes and the circuit wiring layer. The patch connection eliminates parasitic junctions, which otherwise contribute significantly to dielectric loss. In our patch-integrated cross-type (PICT) junction technique, we use one lithography step and one vacuum cycle to evaporate both the junction electrodes and the patch. In a study of more than 3600 junctions, we show an average resistance variation of 3.7$%$ on a wafer that contains forty 0.5$times$0.5-cm$^2$ chips, with junction areas ranging between 0.01 and 0.16 $mu$m$^2$. The average on-chip spread in resistance is 2.7$%$, with 20 chips varying between 1.4 and 2$%$. For the junction sizes used for transmon qubits, we deduce a wafer-level transition-frequency variation of 1.7-2.5$%$. We show that 60-70$%$ of this variation is attributed to junction-area fluctuations, while the rest is caused by tunnel-junction inhomogeneity. Such high frequency predictability is a requirement for scaling-up the number of qubits in a quantum computer.
Edge-contacted superconductor-graphene-superconductor Josephson junction have been utilized to realize topological superconductivity, which have shown superconducting signatures in the quantum Hall regime. We perform the first-principles calculations to interpret electronic couplings at the superconductor-graphene edge contacts by investigating various aspects in hybridization of molybdenum d orbitals and graphene $pi$ orbitals. We also reveal that interfacial oxygen defects play an important role in determining the doping type of graphene near the interface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا