We study the mixed valence transition ($T$$_{v}$ $sim$80 K) in EuNi$_{2}$(Si$_{0.2}$Ge$_{0.8}$)$_{2}$ using Eu 3$d-4f$ X-ray absorption spectroscopy (XAS) and resonant photoemission spectroscopy (RESPES). The Eu$^{2+}$ and Eu$^{3+}$ main peaks show a giant resonance and the spectral features match very well with atomic multiplet calculations. The spectra show dramatic temperature ($T$)-dependent changes over large energies ($sim$10 eV) in RESPES and XAS. The observed non-integral mean valencies of $sim$2.35 $pm$ 0.03 ($T$ = 120 K) and $sim$2.70 $pm$ 0.03 ($T$ = 40 K) indicate homogeneous mixed valence above and below $T$$_{v}$. The redistribution between Eu$^{2+}$$4f^7$+$[spd]^0$ and Eu$^{3+}$$4f^6$+$[spd]^1$ states is attributed to a hybridization change coupled to a Kondo-like volume collapse.
Iron resonant valance band photoemission spectra of Sr substituted LaFe0.75Ni0.25 O3-{delta} have been recorded across the Fe 2p - 3d absorption threshold to obtain Fe specific spectral information on the 3d projected partial density of states. Compa
rison with La1-xSrxFeO3 resonant VB PES literature data suggests that substitution of Fe by Ni forms electron holes which are mainly O 2p character. Substitution of La by Sr increases the hole concentration to an extent that the eg structure vanishes. The variation of the eg and t2g structures is paralleled by the changes in the electrical conductivity.
The compound EuPd2Si2 is a well-known valence-fluctuating compound with a largest variation of Eu valence in a narrow temperature interval (around 150 K). The ball-milled form of this compound was investigated to understand the Eu valence behavior in
the nanoform. The compound is found to retain the ThCr2Si2-type tetragonal structure after ball-milling leading to a reduction in particle size, typically falling in the range 10 - 100 nm. We find that there is a qualitative change in the temperature dependence of magnetic susceptibility for such small particles, with respect to that known for bulk form. To understand this microscopically, Mossbauer spectra as a function of temperature were taken. The Mossbauer spectrum of the nanocrystalline compound is essentially divalent-like at room temperature, but becomes distinctly bimodal at all temperatures below 300 K, unlike that of the bulk form. That is, there is a progressive transfer of intensity from divalent position to trivalent position with a gradual decrease of temperature. We attribute it to a first-order valence transition, with extreme broadening by defects in the nano specimen. Thus, there is a qualitative change in the valence behavior in this compound as the particle size is reduced by ball-milling. Such a particle size study is reported for the first time for a Eu-based mixed-valent compound.
CeB6, a typical Gamma_8-quartet system, exhibits a mysterious antiferroquadrupolar ordered phase in magnetic fields, which is considered as originating from the T_{xyz}-type magnetic octupole moment induced by the field. By resonant x-ray diffraction
in magnetic fields, we have verified that the T_{xyz}-type octupole is indeed induced in the 4f-orbital of Ce with a propagation vector (1/2, 1/2, 1/2), thereby supporting the theory. We observed an asymmetric field dependence of the intensity for an electric quadrupole (E2) resonance when the field was reversed, and extracted a field dependence of the octupole by utilizing the interference with an electric dipole (E1) resonance. The result is in good agreement with that of the NMR-line splitting, which reflects the transferred hyperfine field at the Boron nucleus from the anisotropic spin distribution of Ce with an O_{xy}-type quadrupole. The field-reversal method used in the present study opens up the possibility of being widely applied to other multipole ordering systems such as NpO2, Ce_{x}La_{1-x}B_{6}, SmRu_{4}P_{12}, and so on.
X-ray magnetic circular dichroism (XMCD) at the Eu L-edge (2p->5d) in two compounds exhibiting valence fluctuation, namely EuNi2(Si0.18Ge0.82)2 and EuNi2P2, has been investigated at pulsed high magnetic fields of up to 40 T. A distinct XMCD peak corr
esponding to the trivalent state (Eu3+; f6), whose ground state is nonmagnetic (J=0), was observed in addition to the main XMCD peak corresponding to the magnetic (J=7/2) divalent state (Eu2+; f7). This result indicates that the 5d electrons belonging to both valence states are magnetically polarized. It was also found that the ratio P5d(3+)/P5d(2+) between the polarization of 5d electrons (P5d) in the Eu3+ state and that of Eu2+ is ~ 0.1 in EuNi2(Si0.18Ge0.82)2 and ~ 0.3 in EuNi2P2 at magnetic fields where their macroscopic magnetization values are the same. The possible origin of the XMCD of the Eu3+ state and an explanation of the dependence of P5d(3+)/P5d(2+) on the material are discussed in terms of hybridization between the conduction electrons and the f electrons.
We have studied the electronic structure of Li$_{1+x}$[Mn$_{0.5}$Ni$_{0.5}$]$_{1-x}$O$_2$ ($x$ = 0.00 and 0.05), one of the promising cathode materials for Li ion battery, by means of x-ray photoemission and absorption spectroscopy. The results show
that the valences of Mn and Ni are basically 4+ and 2+, respectively. However, the Mn$^{3+}$ component in the $x$ = 0.00 sample gradually increases with the bulk sensitivity of the experiment, indicating that the Jahn-Teller active Mn$^{3+}$ ions are introduced in the bulk due to the site exchange between Li and Ni. The Mn$^{3+}$ component gets negligibly small in the $x$ = 0.05 sample, which indicates that the excess Li suppresses the site exchange and removes the Jahn-Teller active Mn$^{3+}$.
K. Yamamoto
,K. Horiba
,M. Taguchi
.
(2005)
.
"Temperature dependent Eu 3d-4f X-ray Absorption and Resonant Photoemission Study of the Valence Transition in $EuNi_2(Si_{0.2}Ge_{0.8})_2$"
.
Kazuya Yamamoto
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا