ترغب بنشر مسار تعليمي؟ اضغط هنا

Eu valence transition behavior in the nano form of EuPd2Si2

120   0   0.0 ( 0 )
 نشر من قبل E. V. Sampathkumaran Professor
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The compound EuPd2Si2 is a well-known valence-fluctuating compound with a largest variation of Eu valence in a narrow temperature interval (around 150 K). The ball-milled form of this compound was investigated to understand the Eu valence behavior in the nanoform. The compound is found to retain the ThCr2Si2-type tetragonal structure after ball-milling leading to a reduction in particle size, typically falling in the range 10 - 100 nm. We find that there is a qualitative change in the temperature dependence of magnetic susceptibility for such small particles, with respect to that known for bulk form. To understand this microscopically, Mossbauer spectra as a function of temperature were taken. The Mossbauer spectrum of the nanocrystalline compound is essentially divalent-like at room temperature, but becomes distinctly bimodal at all temperatures below 300 K, unlike that of the bulk form. That is, there is a progressive transfer of intensity from divalent position to trivalent position with a gradual decrease of temperature. We attribute it to a first-order valence transition, with extreme broadening by defects in the nano specimen. Thus, there is a qualitative change in the valence behavior in this compound as the particle size is reduced by ball-milling. Such a particle size study is reported for the first time for a Eu-based mixed-valent compound.

قيم البحث

اقرأ أيضاً

We study the mixed valence transition ($T$$_{v}$ $sim$80 K) in EuNi$_{2}$(Si$_{0.2}$Ge$_{0.8}$)$_{2}$ using Eu 3$d-4f$ X-ray absorption spectroscopy (XAS) and resonant photoemission spectroscopy (RESPES). The Eu$^{2+}$ and Eu$^{3+}$ main peaks show a giant resonance and the spectral features match very well with atomic multiplet calculations. The spectra show dramatic temperature ($T$)-dependent changes over large energies ($sim$10 eV) in RESPES and XAS. The observed non-integral mean valencies of $sim$2.35 $pm$ 0.03 ($T$ = 120 K) and $sim$2.70 $pm$ 0.03 ($T$ = 40 K) indicate homogeneous mixed valence above and below $T$$_{v}$. The redistribution between Eu$^{2+}$$4f^7$+$[spd]^0$ and Eu$^{3+}$$4f^6$+$[spd]^1$ states is attributed to a hybridization change coupled to a Kondo-like volume collapse.
The pressure-dependent relation between Eu valence and lattice structure in model compound EuO is studied with synchrotron-based x-ray spectroscopic and diffraction techniques. Contrary to expectation, a 7% volume collapse at $approx$ 45 GPa is accom panied by a reentrant Eu valence transition into a $emph{lower}$ valence state. In addition to highlighting the need for probing both structure and electronic states directly when valence information is sought in mixed-valent systems, the results also show that widely used bond-valence methods fail to quantitatively describe the complex electronic valence behavior of EuO under pressure.
X-ray magnetic circular dichroism (XMCD) at the Eu L-edge (2p->5d) in two compounds exhibiting valence fluctuation, namely EuNi2(Si0.18Ge0.82)2 and EuNi2P2, has been investigated at pulsed high magnetic fields of up to 40 T. A distinct XMCD peak corr esponding to the trivalent state (Eu3+; f6), whose ground state is nonmagnetic (J=0), was observed in addition to the main XMCD peak corresponding to the magnetic (J=7/2) divalent state (Eu2+; f7). This result indicates that the 5d electrons belonging to both valence states are magnetically polarized. It was also found that the ratio P5d(3+)/P5d(2+) between the polarization of 5d electrons (P5d) in the Eu3+ state and that of Eu2+ is ~ 0.1 in EuNi2(Si0.18Ge0.82)2 and ~ 0.3 in EuNi2P2 at magnetic fields where their macroscopic magnetization values are the same. The possible origin of the XMCD of the Eu3+ state and an explanation of the dependence of P5d(3+)/P5d(2+) on the material are discussed in terms of hybridization between the conduction electrons and the f electrons.
We present a detailed study on the charge ordering (CO) transition in GdBaCo2O5 system by combining high resolution synchrotron powder/single crystal diffraction with electron paramagnetic resonance (EPR) experiments as a function of temperature. We found a second order structural phase transition at TCO=247 K (Pmmm to Pmma) associated with the onset of long range CO. At Tmin = 1.2TCO, the EPR linewidth rapidly broadens providing evidence of spin fluctuations due to magnetic interactions between Gd3+ ions and antiferromagnetic couplings of Co2+/Co3+ sublattices. This likely indicates that, analogously to manganites, the long-range antiferromagnetic order in GdBaCo2O5 sets in at TCO. Pair distribution function (PDF) analysis of diffraction data revealed signatures of structural inhomogeneities at low temperature. By comparing the average and local bond valences, we found that above TCO the local structure is consistent with a fully random occupation of Co2+ and Co3+ in a 1:1 ratio and with a complete charge ordering below TCO. Below T = 100 K the charge localization is partially melted at the local scale, suggesting a reentrant behavior of CO. This result is supported by the weakening of superstructure reflections and the temperature evolution of EPR linewidth that is consistent with paramagnetic (PM) reentrant behavior reported in the GdBaCo2O5.5 parent compound.
We present a detailed infrared study of the insulator-to-metal transition (IMT) in vanadium dioxide (VO2) thin films. Conventional infrared spectroscopy was employed to investigate the IMT in the far-field. Scanning near-field infrared microscopy dir ectly revealed the percolative IMT with increasing temperature. We confirmed that the phase transition is also percolative with cooling across the IMT. We present extensive near-field infrared images of phase coexistence in the IMT regime in VO2. We find that the coexisting insulating and metallic regions at a fixed temperature are static on the time scale of our measurements. A novel approach for analyzing the far-field and near-field infrared data within the Bruggeman effective medium theory was employed to extract the optical constants of the incipient metallic puddles at the onset of the IMT. We found divergent effective carrier mass in the metallic puddles that demonstrates the importance of electronic correlations to the IMT in VO2. We employ the extended dipole model for a quantitative analysis of the observed near-field infrared amplitude contrast and compare the results with those obtained with the basic dipole model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا