ﻻ يوجد ملخص باللغة العربية
In some theoretical analyses of microwave-induced magnetoresistance oscillations in high-mobility two-dimensional systems, the inelastic relaxation time $tau_{in}$ due to electron-electron scattering is evaluated using an equilibrium distribution function $f^0$ in the absence of radiation, and it is concluded that $tau_{in}$ is much larger than $tau_{q}$, the single-particle relaxation time due to impurity scattering. However, under the irradiation of a microwave capable of producing magnetoresistance oscillation, the distribution function of the high-mobility electron gas deviates remarkably from $f^0$ at low temperatures. Estimating $tau_{in}$ using an approximate nonequilibrium distribution function rather than using $f^0$, one will find the system to be in the opposite limit $1/tau_{in}ll 1/tau_{q}$ even for T=0 K. Therefore, models which depend on the assumption $1/tau_{in}gg 1/tau_{q}$ may not be justifiable.
We present a detailed experimental and theoretical analysis of the spin dynamics of two-dimensional electron gases (2DEGs) in a series of n-doped GaAs/AlGaAs quantum wells. Picosecond-resolution polarized pump-probe reflection techniques were applied
In a high mobility two-dimensional electron gas (2DEG) in a GaAs/AlGaAs quantum well we observe a strong magnetoresistance. In lowering the electron density the magnetoresistance gets more pronounced and reaches values of more than 300%. We observe t
We have observed cyclotron resonance in a high-mobility GaAs/AlGaAs two-dimensional electron gas by using the techniques of terahertz time-domain spectroscopy combined with magnetic fields. From this, we calculate the real and imaginary parts of the
Effects of microwave radiation on magnetoresistance are analyzed in a balance-equation scheme that covers regimes of inter- and intra-Landau level processes and takes account of photon-asissted electron transitions as well as radiation-induced change
Understanding the spin dynamics in semiconductor heterostructures is highly important for future semiconductor spintronic devices. In high-mobility two-dimensional electron systems (2DES), the spin lifetime strongly depends on the initial degree of s