ترغب بنشر مسار تعليمي؟ اضغط هنا

تحضير ضغط عالي لموجب سوبركوندوكتور جديد Sr2CuO2+xCl2-y محفوظ بواسطة تحضير الأكسجين القمامي

High pressure synthesis of a new superconductor Sr2CuO2+xCl2-y induced by apical oxygen doping

629   0   0.0 ( 0 )
 نشر من قبل Changqing Jin
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the apical oxygen doping mechanism, i.e. a partial substitution of divalence O for the monovalence Cl, a p-type oxychloride cuprate superconductor, Sr2CuO2+xCl2-y, was synthesized at high pressure high temperature. The x-ray diffraction refinement suggests the superconductor crystallizes into a 0201 structure with space group I4/mmm and lattice parameters being a=3.92A, c=15.6 A. The magnetic susceptibility as well as resistance measurements indicated that the bulk superconductivity with transition temperature 30K was achieved in the sample.



قيم البحث

اقرأ أيضاً

The electrical resistivity rho of the iron-arsenide superconductor Ba1-xKxFe2As2 was measured in applied pressures up to 2.6 GPa for four underdoped samples, with x = 0.16, 0.18, 0.19 and 0.21. The antiferromagnetic ordering temperature T_N, detected as a sharp anomaly in rho(T), decreases linearly with pressure. At pressures above around 1.0 GPa, a second sharp anomaly is detected at a lower temperature T_0, which rises with pressure. We attribute this second anomaly to the onset of a phase that causes a reconstruction of the Fermi surface. This new phase expands with increasing x and it competes with superconductivity. We discuss the possibility that a second spin-density wave orders at T_0, with a Q vector distinct from that of the spin-density wave that sets in at T_N.
In the iron-pnictide material CeFeAsO not only the Fe moments, but also the local 4f moments of the Ce order antiferromagnetically at low temperatures. We elucidate on the peculiar role of the Ce on the emergence of superconductivity. While applicati on of pressure suppresses the iron SDW ordering temperature monotonously up to 4 GPa, the Ce-4f magnetism is stabilized, until both types of magnetic orders disappear abruptly and a narrow SC dome develops. With further increasing pressure characteristics of a Kondo-lattice system become more and more apparent in the electrical resistivity. This suggests a connection of the emergence of superconductivity with the extinction of the magnetic order and the onset of Kondo-screening of the Ce-4f moments.
We have constructed a pressure$-$temperature ($P-T$) phase diagram of $P$-induced superconductivity in EuFe$_2$As$_2$ single crystals, via resistivity ($rho$) measurements up to 3.2 GPa. As hydrostatic pressure is applied, an antiferromagnetic (AF) t ransition attributed to the FeAs layers at $T_mathrm{0}$ shifts to lower temperatures, and the corresponding resistive anomaly becomes undetectable for $P$ $ge$ 2.5 GPa. This suggests that the critical pressure $P_mathrm{c}$ where $T_mathrm{0}$ becomes zero is about 2.5 GPa. We have found that the AF order of the Eu$^{2+}$ moments survives up to 3.2 GPa without significant changes in the AF ordering temperature $T_mathrm{N}$. The superconducting (SC) ground state with a sharp transition to zero resistivity at $T_mathrm{c}$ $sim$ 30 K, indicative of bulk superconductivity, emerges in a pressure range from $P_mathrm{c}$ $sim$ 2.5 GPa to $sim$ 3.0 GPa. At pressures close to but outside the SC phase, the $rho(T)$ curve shows a partial SC transition (i.e., zero resistivity is not attained) followed by a reentrant-like hump at approximately $T_mathrm{N}$ with decreasing temperature. When nonhydrostatic pressure with a uniaxial-like strain component is applied using a solid pressure medium, the partial superconductivity is continuously observed in a wide pressure range from 1.1 GPa to 3.2 GPa.
We report $^{75}$As-NMR results for CrAs under pressure, which shows superconductivity adjoining a helimagnetically ordered state. We successfully evaluated the Knight shift from the spectrum, which is strongly affected by the quadrupole interaction. The Knight shift shows the remarkable feature that the uniform spin susceptibility increases toward low temperatures in the paramagnetic state. This is in sharp contrast to CrAs at ambient pressure, and also to cuprates and Fe pnictides, where antiferromagnetic correlations are dominant. Superconductivity emerges in CrAs under unique magnetic correlations, which probably originate in the three-dimensional zigzag structure of its nonsymmorphic symmetry.
We have carried out high-field resistivity measurements up to 27,T in EuFe$_2$As$_2$ at $P$,=,2.5,GPa, a virtually optimal pressure for the $P$-induced superconductivity, where $T_mathrm{c}$,=,30,K. The $B_mathrm{c2}-T_mathrm{c}$ phase diagram has be en constructed in a wide temperature range with a minimum temperature of 1.6 K ($approx 0.05 times T_mathrm{c}$), for both $B parallel ab$ ($B_mathrm{c2}^mathrm{ab}$) and $B parallel c$ ($B_mathrm{c2}^mathrm{c}$). The upper critical fields $B_mathrm{c2}^mathrm{ab}$(0) and $B_mathrm{c2}^mathrm{c}$(0), determined by the onset of resistive transitions, are 25 T and 22 T, respectively, which are significantly smaller than those of other Fe-based superconductors with similar values of $T_mathrm{c}$. The small $B_mathrm{c2}(0)$ values and the $B_mathrm{c2}(T)$ curves with positive curvature around 20 K can be explained by a multiple pair-breaking model that includes the exchange field due to the magnetic Eu$^{2+}$ moments. The anisotropy parameter, $Gamma=B_mathrm{c2}^{ab}/B_mathrm{c2}^{c}$, in EuFe$_2$As$_2$ at low temperatures is comparable to that of other 122 Fe-based systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا