ترغب بنشر مسار تعليمي؟ اضغط هنا

Upper Critical Field of Pressure-Induced Superconductor EuFe$_2$As$_2$

167   0   0.0 ( 0 )
 نشر من قبل Nobuyuki Kurita
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have carried out high-field resistivity measurements up to 27,T in EuFe$_2$As$_2$ at $P$,=,2.5,GPa, a virtually optimal pressure for the $P$-induced superconductivity, where $T_mathrm{c}$,=,30,K. The $B_mathrm{c2}-T_mathrm{c}$ phase diagram has been constructed in a wide temperature range with a minimum temperature of 1.6 K ($approx 0.05 times T_mathrm{c}$), for both $B parallel ab$ ($B_mathrm{c2}^mathrm{ab}$) and $B parallel c$ ($B_mathrm{c2}^mathrm{c}$). The upper critical fields $B_mathrm{c2}^mathrm{ab}$(0) and $B_mathrm{c2}^mathrm{c}$(0), determined by the onset of resistive transitions, are 25 T and 22 T, respectively, which are significantly smaller than those of other Fe-based superconductors with similar values of $T_mathrm{c}$. The small $B_mathrm{c2}(0)$ values and the $B_mathrm{c2}(T)$ curves with positive curvature around 20 K can be explained by a multiple pair-breaking model that includes the exchange field due to the magnetic Eu$^{2+}$ moments. The anisotropy parameter, $Gamma=B_mathrm{c2}^{ab}/B_mathrm{c2}^{c}$, in EuFe$_2$As$_2$ at low temperatures is comparable to that of other 122 Fe-based systems.



قيم البحث

اقرأ أيضاً

We present the magnetic and superconducting phase diagram of EuFe$_2$As$_2$ for $B parallel c$ and $B parallel ab$. The antiferromagnetic phase of the Eu$^{2+}$ moments is completely enclosed in the superconducting phase. The upper critical field vs. temperature curves exhibit strong concave curvatures, which can be explained by the Jaccarino-Peter compensation effect due to the antiferromagnetic exchange interaction between the Eu$^{2+}$ moments and conduction electrons.
We report the ac magnetic susceptibility $chi_{ac}$ and resistivity $rho$ measurements of EuFe$_2$As$_2$ under high pressure $P$. By observing nearly 100% superconducting shielding and zero resistivity at $P$ = 28 kbar, we establish that $P$-induced superconductivity occurs at $T_c sim$~30 K in EuFe$_2$As$_2$. $rho$ shows an anomalous nearly linear temperature dependence from room temperature down to $T_c$ at the same $P$. $chi_{ac}$ indicates that an antiferromagnetic order of Eu$^{2+}$ moments with $T_N sim$~20 K persists in the superconducting phase. The temperature dependence of the upper critical field is also determined.
We report the measurements of anisotropic magnetization and magnetoresistance on single crystals of EuFe$_2$As$_2$, a parent compound of ferro-arsenide high-temperature superconductor. Apart from the antiferromagnetic (AFM) spin-density-wave transiti on at 186 K associated with Fe moments, the compound undergoes another magnetic phase transition at 19 K due to AFM ordering of Eu$^{2+}$ spins ($J=S=7/2$). The latter AFM state exhibits metamagnetic transition under magnetic fields. Upon applying magnetic field with $Hparallel c$ at 2 K, the magnetization increases linearly to 7.0 $mu_{B}$/f.u. at $mu_{0}H$=1.7 T, then keeps at this value of saturated Eu$^{2+}$ moments under higher fields. In the case of $Hparallel ab$, the magnetization increases step-like to 6.6 $mu_{B}$/f.u. with small magnetic hysteresis. A metamagnetic phase was identified with the saturated moments of 4.4 $mu_{B}$/f.u. The metamagnetic transition accompanies with negative in-plane magnetoresistance, reflecting the influence of Eu$^{2+}$ moments ordering on the electrical conduction of FeAs layers. The results were explained in terms of spin-reorientation and spin-reversal based on an $A$-type AFM structure for Eu$^{2+}$ spins. The magnetic phase diagram has been established.
The newly discovered BaPt$_2$As$_2$ shows a structural distortion at around 275~K, followed by the emergence of superconductivity at lower temperatures. Here we identify the presence of charge density wave (CDW) order at room temperature and ambient pressure using single crystal x-ray diffraction, with both a superlattice and an incommensurate modulation, where there is a change of the superlattice structure below $simeq$ 275~K. Upon applying pressure, BaPt$_2$As$_2$ shows a rich temperature-pressure phase diagram with multiple pressure-induced transitions at high temperatures, the emergence or disappearance of which are correlated with sudden changes in the superconducting transition temperature $T_c$. These findings demonstrate that BaPt$_2$As$_2$ is a promising new system for studying competing interactions and the relationship between high-temperature electronic instabilities and superconductivity.
A small in-plane external uniaxial pressure has been widely used as an effective method to acquire single domain iron pnictide BaFe$_2$As$_2$, which exhibits twin-domains without uniaxial strain below the tetragonal-to-orthorhombic structural (nemati c) transition temperature $T_s$. Although it is generally assumed that such a pressure will not affect the intrinsic electronic/magnetic properties of the system, it is known to enhance the antiferromagnetic (AF) ordering temperature $T_N$ ($<T_s$) and create in-plane resistivity anisotropy above $T_s$. Here we use neutron polarization analysis to show that such a strain on BaFe$_2$As$_2$ also induces a static or quasi-static out-of-plane ($c$-axis) AF order and its associated critical spin fluctuations near $T_N/T_s$. Therefore, uniaxial pressure necessary to detwin single crystals of BaFe$_2$As$_2$ actually rotates the easy axis of the collinear AF order near $T_N/T_s$, and such effect due to spin-orbit coupling must be taken into account to unveil the intrinsic electronic/magnetic properties of the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا