ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetotransport in C-doped AlGaAs heterostructures

77   0   0.0 ( 0 )
 نشر من قبل Klaus Ensslin
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-quality C-doped p-type AlGaAs heterostructures with mobilities exceeding 150 000 cm$^2$/Vs are investigated by low-temperature magnetotransport experiments. We find features of the fractional quantum Hall effect as well as a highly resolved Shubnikov-de Haas oscillations at low magnetic fields. This allows us to determine the densities, effective masses and mobilities of the holes populating the spin-split subbands arising from the lack of inversion symmetry in these structures.

قيم البحث

اقرأ أيضاً

146 - B. Grbic , R. Leturcq , T. Ihn 2007
The two-terminal magneto-conductance of a hole gas in C-doped AlGaAs/GaAs heterostructures with ohmic contacts consisting of alloyed In/Zn/Au displays a pronounced hysteresis of the conductance around zero magnetic field. The hysteresis disappears ab ove magnetic fields of around 0.5 T and temperatures above 300 mK. For magnetic fields below 10 mT we observe a pronounced dip in the magneto-conductance. We tentatively discuss these experimental observations in the light of superconductivity of the ohmic contacts.
We use a van-der-Waals pickup technique to fabricate different heterostructures containing WSe$_2$(WS$_2$) and graphene. The heterostructures were structured by plasma etching, contacted by one-dimensional edge contacts and a topgate was deposited. F or graphene/WSe$_2$/SiO$_2$ samples we observe mobilities of $sim$12 000 cm$^2$/Vs. Magnetic field dependent resistance measurements on these samples show a peak in the conductivity at low magnetic field. This dip is attributed to the weak antilocalization (WAL) effect, stemming from spin-orbit coupling. Samples where graphene is encapsulated between WSe$_2$(WS$_2$) and hBN show a much higher mobility of up to $sim$120 000 cm$^2$/Vs. However, in these samples no WAL peak can be observed. We attribute this to a transition from the diffusive to the quasiballistic regime. At low magnetic field a resistance peak appears, which we ascribe to a size effect, due to boundary scattering. Shubnikov-de Haas oscillations in fully encapsulated samples show all integer filling factors, due to complete lifting of the spin and valley degeneracy.
We report on magnetotransport measurements in two MBE-grown GaAs/AlGaAs superlattices formed by wide and narrow quantum wells and thin Si-doped barriers subject to tilted magnetic fields. It has been shown that illumination of the strongly coupled su perlattice with narrow wells leads to reduction of its dimensionality from the 3D to 2D. The illumination-induced transition is revealed by remarkable change of magnetoresistance curves as compared to those measured before illumination. The experimental data along with tight-binding model calculations indicate that the illumination not only enhances the electron concentration but also suppresses the electron tunneling through the barriers.
We demonstrate a method of making a very shallow, gateable, undoped 2-dimensional electron gas. We have developed a method of making very low resistivity contacts to these structures and systematically studied the evolution of the mobility as a funct ion of the depth of the 2DEG (from 300nm to 30nm). We demonstrate a way of extracting quantitative information about the background impurity concentration in GaAs and AlGaAs, the interface roughness and the charge in the surface states from the data. This information is very useful from the perspective of molecular beam epitaxy (MBE) growth. It is difficult to fabricate such shallow high-mobility 2DEGs using modulation doping due to the need to have a large enough spacer layer to reduce scattering and switching noise from remote ionsied dopants.
This paper reports on the observation and analysis of magnetotransport phenomena in the nonlinear differential resistance $r_{xx}=dV_{xx}/dI$ of high-mobility InGaAs/InP and GaAs/AlGaAs Hall bar samples driven by direct current, $Idc$. Specifically, it is observed that Shubnikov -de Haas (SdH) oscillations at large filling factors invert their phase at sufficiently large values of $Idc$. This phase inversion is explained as being due to an electron heating effect. In the quantum Hall effect regime the $r_{xx}$ oscillations transform into diamond-shaped patterns with different slopes corresponding to odd and even filling factors. The diamond-shaped features at odd filling factors can be used as a probe to determine spin energy gaps. A Zero Current Anomaly (ZCA) which manifests itself as a narrow dip in the $r_{xx}(Idc)$ characteristics at zero current, is also observed. The ZCA effect strongly depends upon temperature, vanishing above 1 K while the transport diamonds persist to higher temperatures. The transport diamonds and ZCA are fully reproduced in a higher mobility GaAs/AlGaAs Hall bar structure confirming that these phenomena reflect intrinsic properties of two-dimensional systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا