ﻻ يوجد ملخص باللغة العربية
We have measured the transformation of pseudomorphic Ni films on Pd(100) into their bulk fcc phase as a function of the film thickness. We made use of x-ray diffraction and x-ray induced photoemission to study the evolution of the Ni film and its interface with the substrate. The growth of a pseudomorphic film with tetragonally strained face centered symmetry (fct) has been observed by out-of-plane x-ray diffraction up to a maximum thickness of 10 Ni layers (two of them intermixed with the substrate), where a new fcc bulk-like phase is formed. After the formation of the bulk-like Ni domains, we observed the pseudomorphic fct domains to disappear preserving the number of layers and their spacing. The phase transition thus proceeds via lateral growth of the bulk-like phase within the pseudomorphic one, i.e. the bulk-like fcc domains penetrate down to the substrate when formed. This large depth of the walls separating the domains of different phases is also indicated by the strong increase of the intermixing at the substrate-film interface, which starts at the onset of the transition and continues at even larger thickness. The bulk-like fcc phase is also slightly strained; its relaxation towards the orthomorphic lattice structure proceeds slowly with the film thickness, being not yet completed at the maximum thickness presently studied of 30 Angstrom (i.e. about 17 layers).
The bulk quaternary equiatomic CoCrFeNi alloy is studied extensively in literature. Under experimental conditions, it shows a single-phase fcc structure and its physical and mechanical properties are similar to those of the quinary equiatomic CoCrFeM
Hydrogen can penetrate reversibly a number of metals, occupy the interstitial sites and cause large expansion of the crystal lattice. The question discussed here is whether the kinetics of the structural response matches hydrogen absorption. We show
We present Monte Carlo simulations for the size and temperature dependence of the diffusion coefficient of adatom islands on the Cu(100) surface. We show that the scaling exponent for the size dependence is not a constant but a decreasing function of
Epitaxial La0.7Sr0.3MnO3 (LSMO) thin films, with different thickness ranging from 20 nm up to 330 nm, were deposited on (100)-oriented strontium titanate (STO) substrates by pulsed laser deposition, and their structure and morphology characterized at
We combined photoelemission spectroscopy with first-principle calculations to investigate structural and electronic properties of SrTiO$_{3}$ doped with Ni impurities. In SrTiO$_{3}$ polycrystalline thin films, grown by magnetron sputtering, the mean