ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetic hindrance during the initial oxidation of Pd(100) at ambient pressures

54   0   0.0 ( 0 )
 نشر من قبل Patrick Rinke
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The oxidation of the Pd(100) surface at oxygen pressures in the 10^-6 to 10^3 mbar range and temperatures up to 1000 K has been studied in-situ by surface x-ray diffraction (SXRD). The results provide direct structural information on the phases present in the surface region and on the kinetics of the oxide formation. Depending on the (T,p) environmental conditions we either observe a thin sqrt(5) x sqrt(5) R27 surface oxide or the growth of a rough, poorly ordered bulk oxide film of PdO predominantly with (001) orientation. By either comparison to the surface phase diagram from first-principles atomistic thermodynamics or by explicit time-resolved measurements we identify a strong kinetic hindrance to the bulk oxide formation even at temperatures as high as 675 K.



قيم البحث

اقرأ أيضاً

We have studied the segregation of P and B impurities during oxidation of the Si(100) surface by means of combined static and dynamical first-principles simulations based on density functional theory. In the bare surface, dopants segregate to chemica lly stable surface sites or to locally compressed subsurface sites. Surface oxidation is accompanied by development of tensile surface stress up to 2.9 N/m at a coverage of 1.5 monolayers of oxygen and by formation of oxidised Si species with charges increasing approximately linearly with the number of neighbouring oxygen atoms. Substitutional P and B defects are energetically unstable within the native oxide layer, and are preferentially located at or beneath the Si/SiOx interface. Consistently, first-principles molecular dynamics simulations of native oxide formation on doped surfaces reveal that dopants avoid the formation of P-O and B-O bonds, suggesting a surface oxidation mechanism whereby impurities remain trapped at the Si/SiOx interface. This seems to preclude a direct influence of impurities on the surface electrostatics and, hence, on the interactions with an external environment.
99 - G.A. Rizzi 2004
We have measured the transformation of pseudomorphic Ni films on Pd(100) into their bulk fcc phase as a function of the film thickness. We made use of x-ray diffraction and x-ray induced photoemission to study the evolution of the Ni film and its int erface with the substrate. The growth of a pseudomorphic film with tetragonally strained face centered symmetry (fct) has been observed by out-of-plane x-ray diffraction up to a maximum thickness of 10 Ni layers (two of them intermixed with the substrate), where a new fcc bulk-like phase is formed. After the formation of the bulk-like Ni domains, we observed the pseudomorphic fct domains to disappear preserving the number of layers and their spacing. The phase transition thus proceeds via lateral growth of the bulk-like phase within the pseudomorphic one, i.e. the bulk-like fcc domains penetrate down to the substrate when formed. This large depth of the walls separating the domains of different phases is also indicated by the strong increase of the intermixing at the substrate-film interface, which starts at the onset of the transition and continues at even larger thickness. The bulk-like fcc phase is also slightly strained; its relaxation towards the orthomorphic lattice structure proceeds slowly with the film thickness, being not yet completed at the maximum thickness presently studied of 30 Angstrom (i.e. about 17 layers).
Combining high-resolution core-level spectroscopy (HRCLS), scanning tunneling microscopy (STM) and density-functional theory (DFT) calculations we reanalyze the Pd(100)-(SQRT(5) x SQRT(5) R27^o)-O surface oxide phase. We find that the prevalent str uctural model, a rumpled PdO(001) film suggested by previous low energy electron diffraction (LEED) work (M. Saidy et al., Surf. Sci. 494, L799 (2001)), is incompatible with all three employed methods. Instead, we suggest the two-dimensional film to consist of a strained PdO(101) layer on top of Pd(100). LEED intensity calculations show that this model is compatible with the experimental data of Saidy et al.
We investigate the binary phase diagram of helium and iron using first-principles calculations. We find that helium, which is a noble gas and inert at ambient conditions, forms stable crystalline compounds with iron at terapascal pressures. A FeHe co mpound becomes stable above 4 TPa, and a FeHe$_2$ compound above 12 TPa. Melting is investigated using molecular dynamics simulations, and a superionic phase with sublattice melting of the helium atoms is predicted. We discuss the implications of our predicted helium-iron phase diagram for interiors of giant (exo)planets and white dwarf stars.
We address the in-plane pressure-dependent electrodynamics of graphite through synchrotron based infrared spectroscopy and ab initio Density Functional Theory calculations. The Drude term remarkably increases upon pressure application, as a consequen ce of an enhancement of both electron and hole charge densities. This is due to the growth of the band dispersion along the k_z direction between the K and H points of the Brillouin zone. On the other hand, the mid-infrared optical conductivity between 800 and 5000 cm-1 is almost flat, and very weakly pressure dependent, at least up to 7 GPa. This demonstrates a surprising robustness of the graphene-like universal quantum conductance of graphite, even when the interlayer distance is significantly reduced.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا