ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical exponents in mean-field classical spin systems

112   0   0.0 ( 0 )
 نشر من قبل Debraj Das
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For a mean-field classical spin system exhibiting a second-order phase transition in the stationary state, we obtain within the corresponding phase space evolution according to the Vlasov equation the values of the critical exponents describing power-law behavior of response to a small external field. The exponent values so obtained significantly differ from the ones obtained on the basis of an analysis of the static phase-space distribution, with no reference to dynamics. This work serves as an illustration that cautions against relying on a static approach, with no reference to the dynamical evolution, to extract critical exponent values for mean-field systems.



قيم البحث

اقرأ أيضاً

The exponential growth of the out-of-time-ordered correlator (OTOC) has been proposed as a quantum signature of classical chaos. The growth rate is expected to coincide with the classical Lyapunov exponent. This quantum-classical correspondence has b een corroborated for the kicked rotor and the stadium billiard, which are one-body chaotic systems. The conjecture has not yet been validated for realistic systems with interactions. We make progress in this direction by studying the OTOC in the Dicke model, where two-level atoms cooperatively interact with a quantized radiation field. For parameters where the model is chaotic in the classical limit, the OTOC increases exponentially in time with a rate that closely follows the classical Lyapunov exponent.
We give an overview of numerical and experimental estimates of critical exponents in Spin Glasses. We find that the evidence for a breakdown of universality of exponents in these systems is very strong.
Universal scaling of entanglement estimators of critical quantum systems has drawn a lot of attention in the past. Recent studies indicate that similar universal properties can be found for bipartite information estimators of classical systems near p hase transitions, opening a new direction in the study of critical phenomena. We explore this subject by studying the information estimators of classical spin chains with general mean-field interactions. In our explicit analysis of two different bipartite information estimators in the canonical ensemble we find that, away from criticality both the estimators remain finite in the thermodynamic limit. On the other hand, along the critical line there is a logarithmic divergence with increasing system-size. The coefficient of the logarithm is fully determined by the mean-field interaction and it is the same for the class of models we consider. The scaling function, however, depends on the details of each model. In addition, we study the information estimators in the micro-canonical ensemble, where they are shown to exhibit a different universal behavior. We verify our results using numerical calculations of two specific cases of the general Hamiltonian.
64 - D. Guery-Odelin 2001
In this article, we investigate mean field effects for a bosonic gas harmonically trapped above the transition temperature in the collisionless regime. We point out that those effects can play also a role in low dimensional system. Our treatment reli es on the Boltzmann equation with the inclusion of the mean field term. The equilibrium state is first discussed. The dispersion relation for collective oscillations (monopole, quadrupole, dipole modes) is then derived. In particular, our treatment gives the frequency of the monopole mode in an isotropic and harmonic trap in the presence of mean field in all dimensions.
Quantum chaos refers to signatures of classical chaos found in the quantum domain. Recently, it has become common to equate the exponential behavior of out-of-time order correlators (OTOCs) with quantum chaos. The quantum-classical correspondence bet ween the OTOC exponential growth and chaos in the classical limit has indeed been corroborated theoretically for some systems and there are several projects to do the same experimentally. The Dicke model, in particular, which has a regular and a chaotic regime, is currently under intense investigation by experiments with trapped ions. We show, however, that for experimentally accessible parameters, OTOCs can grow exponentially also when the Dicke model is in the regular regime. The same holds for the Lipkin-Meshkov-Glick model, which is integrable and also experimentally realizable. The exponential behavior in these cases are due to unstable stationary points, not to chaos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا