ﻻ يوجد ملخص باللغة العربية
We have measured the specific heat and magnetization {it versus} temperature in a single crystal sample of superconducting La$_{2}$CuO$_{4.11}$ and in a sample of the same material after removing the excess oxygen, in magnetic fields up to 15 T. Using the deoxygenated sample to subtract the phonon contribution, we find a broad peak in the specific heat, centered at 50 K. This excess specific heat is attributed to fluctuations of the Cu spins possibly enhanced by an interplay with the charge degrees of freedom, and appears to be independent of magnetic field, up to 15 T. Near the superconducting transition $T_{c}$($H$=0)= 43 K, we find a sharp feature that is strongly suppressed when the magnetic field is applied parallel to the crystallographic c-axis. A model for 3D vortex fluctuations is used to scale magnetization measured at several magnetic fields. When the magnetic field is applied perpendicular to the c-axis, the only observed effect is a slight shift in the superconducting transition temperature.
The magnetic properties of the layered oxypnictide LaMnAsO have been revisited using neutron scattering and magnetization measurements. The present measurements identify the N{e}el temperature $T_N$ = 360(1) K. Below $T_N$ the critical exponent descr
Superconductivity and magnetic order strongly compete in many conventional superconductors, at least partly because both tend to gap the Fermi surface. In magnetically-ordered conventional superconductors, the competition between these cooperative ph
Doping of the band insulator FeS$_2$ with Co on the Fe site introduces a small density of itinerant carriers and magnetic moments. The lattice constant, AC and DC magnetic susceptibility, magnetization, and specific heat have been measured over the $
$rm CePt_3Si$ is a novel heavy fermion superconductor, crystallising in the $rm CePt_3B$ structure as a tetragonally distorted low symmetry variant of the $rm AuCu_3$ structure type. $rm CePt_3Si$ exhibits antiferromagnetic order at $T_N approx 2.2$
Although La(2)Cu(1-x)Li(x)O(4) [Li-LCO] differs from La(2-x)Sr(x)CuO(4) [Sr-LCO] in many ways (e.g., the absence of metallic transport, high-Tc superconductivity, and incommensurate antiferromagnetic correlations), it has been known that certain magn